Skip to main content

Control of the Temperature of a Finite Diffusive Interface Medium Using the CRONE Controller

  • Chapter
  • First Online:
Fractional Order Control and Synchronization of Chaotic Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 688))

  • 1810 Accesses

Abstract

This chapter deals with the control of the temperature across a finite diffusive interface medium using the CRONE controller (French acronym: Commande Robuste d’Ordre Non Entier). In fact, the plant transfer function presents two special properties: a fractional integrator of order 0.5 and a delay factor of a fractional order (when controlling the temperature far from the boundary where the density of flux is applied). The novel approach of this work resides by the use of a fractional controller that would control a fractional order plant. Also note that the choice of the CRONE generation is important as this controller is developed in three generations: the first generation CRONE strategy is particularly appropriate when the desired open-loop gain crossover frequency ω u is within a frequency range where the plant frequency response is asymptotic (this frequency band will be called a plant asymptotic-behavior band). As for the second generation, it is defined when ω u is within a frequency range where the plant uncertainties are gain-like along with a constant phase variation. Concerning the third generation, it would be applied when both a gain and a phase variations are observed when dealing with plant’s uncertainties. This generation will not be treated in this chapter due to some space constraints. Thus, this chapter will present some case scenarios which will lead to the use of the first two CRONE generations when using three different plants: the first one is constituted of iron, the second of aluminum and the third of copper with variable lengths L and several placements of the temperature sensor x. Simulation results will show the temperature variation across the diffusive interface medium in both time and frequency domains using Matlab and Simulink. These results show how the temperature behaves at different positions for the three materials in use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abi Zeid Daou, R., & Moreau, X. (2015). Fractional calculus: Applications. New York: Nova.

    Google Scholar 

  2. Abi Zeid Daou, R., Moreau, X., Assaf, R., & Christohpy, F. (2012). Analysis of HTE fractional order system in the thermal diffusive interface—part 1: Application to a semi-infinite plane medium. In International Conference on Advances in Computational Tools for Engineering Applications, Lebanon.

    Google Scholar 

  3. Assaf, R., Moreau, X., Abi Zeid Daou, R., & Christohpy, F. (2012). Analysis of HTE fractional order system in HTE thermal diffusive interface—part 2: Application to a finite medium. In International Conference on Advances in Computational Tools for Engineering Applications, Lebanon.

    Google Scholar 

  4. Azar, A. T., & Serrano, F. (2014). Robust IMC-PID tuning for cascade control systems with gain and phase margin specifications. Neural Computing and Applications, 25(5).

    Google Scholar 

  5. Azar, A. T., & Serrano, F. (2015). Design and modeling of anti wind up PID controllers. Complex System Modelling and Control Through Intelligent Soft Computations, 319.

    Google Scholar 

  6. Azar, A. T., & Zhu, Q. (2015). Advances and applications in sliding mode control systems. Study in computational intelligence (Vol. 576). Springer.

    Google Scholar 

  7. Battaglia, J., Cois, O., Puigsegur, L., & Oustaloup, A. (2001). Solving an inverse heat conduction problem using a non-integer identified model. International Journal of Heat and Mass Transfer, 44(14), 2671–2680.

    Article  MATH  Google Scholar 

  8. Boulkroune, A., Bouzeriba, A., Bouden, T., & Azar, A. T. (2016). Fuzzy adaptative synchronization of uncertain fractional-order chaotic systems. Control: Advances in Chaos Theory and Intelligent. 337.

    MATH  Google Scholar 

  9. Charef, A., & Fergani, N. (2010). PIλDμ controller tuning for desired closed-loop response using impulse response. In Workshop on Fractional Derivation and Applications, Spain.

    Google Scholar 

  10. Cois, O. (2002). Systèmes linéaires non entiers et identification par modèle non entier: application en thermique. Bordeaux: Université Bordeaux I.

    Google Scholar 

  11. CRONE Group. (2005). CRONE control design module. Bordeaux: Bordeaux University.

    Google Scholar 

  12. Lin, J. (2001). Modélisation et identification de systèmes d’ordre non entier. Poitiers: Université de Poitiers.

    Google Scholar 

  13. Magin, R., Ortigueira, M., Podlubny, I., & Trujillo, J. (2011). On the fractional signals and systems. Signal Processing, 91(3), 350–371.

    Article  MATH  Google Scholar 

  14. Malti, R., Sabatier, J., & Akçay, H. (2009). Thermal modeling and identification of an aluminium rod using fractional calculus. In 15th IFAC Symposium on System Identification, France.

    Google Scholar 

  15. Miller, K., & Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. New York: Wiley.

    MATH  Google Scholar 

  16. Oldham, K., & Spanier, J. (1974). The fractional calculus. New York: Academic Press.

    MATH  Google Scholar 

  17. Oustaloup, A. (1975). Etude et Réalisation d’un systme d’asservissement d’ordre 3/2 de la fréquence d’un laser à colorant continu. Bordeaux: Universitu of Bordeaux.

    Google Scholar 

  18. Poinot, T., & Trigeassou, J. (2004). Identification of fractional systems using an output-error technique. Nonlinear Dynamics, 38(1), 133–154.

    Article  MathSciNet  MATH  Google Scholar 

  19. Trigeassou, J.-C., Poinot, T., Lin, J., Oustaloup, A., & Levron, F. (1999). Modeling and identification of a non integer order system. In European Control Conference. Karlsruhe: IFAC.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Abi Zeid Daou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Moreau, X., Abi Zeid Daou, R., Christophy, F. (2017). Control of the Temperature of a Finite Diffusive Interface Medium Using the CRONE Controller. In: Azar, A., Vaidyanathan, S., Ouannas, A. (eds) Fractional Order Control and Synchronization of Chaotic Systems. Studies in Computational Intelligence, vol 688. Springer, Cham. https://doi.org/10.1007/978-3-319-50249-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50249-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50248-9

  • Online ISBN: 978-3-319-50249-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics