Skip to main content

Comparison of Three Different Synchronization Schemes for Fractional Chaotic Systems

  • Chapter
  • First Online:
Fractional Order Control and Synchronization of Chaotic Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 688))

Abstract

The importance of synchronization schemes in natural and physical systems including communication modes has made chaotic synchronization an important tool for scientist. Synchronization of chaotic systems are usually conducted without considering the efficiency and robustness of the scheme used. In this work, performance evaluation of three different synchronization schemes: Direct Method, Open Plus Closed Loop (OPCL) and Active control is investigated. The active control technique was found to have the best stability and error convergence. Numerical simulations have been conducted to assert the effectiveness of the proposed analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, I., Saaban, A. B., & Shahzad, M. (2015). A research on active control to synchronize a new 3D chaotic system. Systems, 4(2), 1–14. doi:10.3390/systems4010002.

    Google Scholar 

  2. Al-Sawalha, M. M., & Shoaib, M. (2016). Reduced-order synchronization of fractional order chaotic systems with fully unknown parameters using modified adaptive control. Journal of Nonlinear Science and Applications, 9, 1815–1825.

    MathSciNet  MATH  Google Scholar 

  3. Alam, Z., Yuan, L., & Yang, Q. (2016). Chaos and combination synchronization of a new fractional-order system with two stable node-foci. IEEE/CAA Journal of Automatica Sinica, 3(2), 157–164. doi:10.1109/JAS.2016.7451103.

    Article  MathSciNet  Google Scholar 

  4. Bai, E. W., & Lonngren, K. E. (1997). Synchronization of two lorenz systems using active control. Chaos, Solitons & Fractals, 8(1), 51–58.

    Article  MATH  Google Scholar 

  5. Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., & Zhou, C. S. (2002). The synchronization of chaotic systems. Physics Reports, 366, 1–101.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bouzeriba, A., Boulkroune, A., & Bouden, T. (2015). Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. International Journal of Machine Learning and Cybernetics, 1–16. http://dx.doi.org/10.1007/s13042-015-0425-7.

  7. Caponetto, R., Dongola, G., Fortuna, L., & Petras, I. (2010). Fractional order systems: Modeling and control applications, A (Vol. 72). World Scientific Publishing Cp. Pte. Ltd.

    Google Scholar 

  8. Concepcion, A. M., Chen, Y. Q., Vinagre, B. M., Xue, D., & Feliu, V. (2010). Fractional-order systems and control: Fundamentals and applications. London: springer.

    MATH  Google Scholar 

  9. Couceiro, M. S., Clemente, F. M., & Martins, F. M. L. (2013). Analysis of football player’ s motion in view of fractional calculus. Central European Journal of Physics, 11(6), 714–723. doi:10.2478/s11534-013-0258-5.

    Google Scholar 

  10. Dzieliński, A., Sierociuk, D., & Sarwas, G. (2011). Some applications of fractional order calculus. Bulletin of the Polish Academy of Sciences: Technical Sciences, 58(4), 583–592. doi:10.2478/v10175-010-0059-6.

  11. El-Sayed, A., Nour, H., Elsaid, A., Matouk, A., & Elsonbaty, A. (2016). Dynamical behaviors, circuit realization, chaos control, and synchronization of a new fractional order hyperchaotic system. Applied Mathematical Modelling, 40(5), 3516–3534. doi:10.1016/j.apm.2015.10.010.

  12. Gao, Y. B., Sun, B. H., & Lu, G. P. (2013). Modified function projective lag synchronization of chaotic systems with disturbance estimations. Applied Mathematical Modelling, 37(7), 4993–5000.

    Article  MathSciNet  Google Scholar 

  13. Golmankhaneh, A. K., Arefi, R., & Baleanu, D. (2015). Synchronization in a nonidentical fractional order of a proposed modified system. Journal of Vibration and Control, 21(6), 1154–1161. doi:10.1177/1077546313494953.

    Article  MathSciNet  MATH  Google Scholar 

  14. Grosu, I. (1997). Robust synchronization. Physcial Review E, 56(3), 3709–3712.

    Article  Google Scholar 

  15. Huang, L. L., Zhang, J., & Shi, S. S. (2015). Circuit simulation on control and synchronization of fractional order switching chaotic system. Mathematics and Computers in Simulation, 113, 28–39. doi:10.1016/j.matcom.2015.03.001.

    Article  MathSciNet  Google Scholar 

  16. Jackson, E. A., & Grosu, I. (1995). An open-plus-closed-loop (OPCL) control of complex dynamic systems. Physica D: Nonlinear Phenomena, 85(1), 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  17. Kapitaniak, M., Czolczynski, K., Perlikowski, P., Stefanski, A., & Kapitaniak, T. (2012). Synchronization of clocks. Physics Reports, 517(1–2), 1–69.

    Article  MATH  Google Scholar 

  18. Kareem, S. O., Ojo, K. S., & Njah, A. N. (2012). Function projective synchronization of identical and non-identical modified finance and Shimizu Morioka systems, 79(1), 71–79. doi:10.1007/s12043-012-0281-x.

  19. Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20, 130–141.

    Article  Google Scholar 

  20. Mahmoud, G. M., & Mahmoud, E. E. (2011). Modified projective lag synchronization of two nonidentical hyperchaotic complex nonlinear systems. International Journal of Bifurcation and Chaos, 21(08), 2369–2379. doi:10.1142/S0218127411029859.

    Article  MATH  Google Scholar 

  21. Mahmoud, G. M., Abed-Elhameed, T. M., & Ahmed, M. E. (2016). Generalization of combination—combination synchronization of chaotic n-dimensional fractional-order dynamical systems. Nonlinear Dynamics, 83(4), 1885–1893. doi:10.1007/s11071-015-2453-y.

  22. Mathiyalagan, K., Park, J. H., & Sakthivel, R. (2015). Exponential synchronization for fractional-order chaotic systems with mixed uncertainties. Complexity, 21(1), 114–125. doi:10.1002/cplx.21547.

  23. Mohadeszadeh, M., & Delavari, H. (2015). Synchronization of fractional-order hyper-chaotic systems based on a new adaptive sliding mode control. International Journal of Dynamics and Control, 1–11. doi:10.1007/s40435-015-0177-y.

  24. Ogunjo, S. T. (2013). Increased and reduced order synchronization of 2D and 3D dynamical systems. International Journal of Nonlinear Science, 16(2), 105–112.

    MathSciNet  Google Scholar 

  25. Ogunjo, S. T., Adediji, A. T., & Dada, J. B. (2015). Investigating chaotic features in solar radiation over a tropical station using recurrence quantification analysis. Theoretical and Applied Climatology, 1–7. doi:10.1007/s00704-015-1642-4.

  26. Ojo, K., Njah, A., Olusola, O., & Omeike, M. (2014). Generalized reduced-order hybrid combination synchronization of three Josephson junctions via backstepping technique. Nonlinear Dynamics, 77(3), 583–595.

    Article  MathSciNet  MATH  Google Scholar 

  27. Ojo, K., Njah, A., Olusola, O., & Omeike, M. (2014). Reduced order projective and hybrid projective combination-combination synchronization of four chaotic Josephson junctions. Journal of Chaos.

    Google Scholar 

  28. Ojo, K., Njah, A., & Olusola, O. (2015). Compound-combination synchronization of chaos in identical and different orders chaotic systems. Archives of Control Sciences, 25(4), 463–490.

    Article  MathSciNet  MATH  Google Scholar 

  29. Ojo, K., Njah, A., & Olusola, O. (2015). Generalized function projective combination-combination synchronization of chaos in third order chaotic systems. Chinese Journal of Physics, 53(3), l1–16.

    Google Scholar 

  30. Ojo, K. S., & Ogunjo, S. T. (2012). Synchronization of 4D Rabinovich hyperchaotic system for secure communication. Journal of Nigerian Association of Mathematical Physics, 21, 35–40.

    Google Scholar 

  31. Ojo, K. S., Njah, A., & Ogunjo, S. T. (2013). Comparison of backstepping and modified active control in projective synchronization of chaos in an extended Bonhoffer van der Pol oscillator. Pramana, 80(5), 825–835.

    Article  Google Scholar 

  32. Ojo, K. S., Ogunjo, S. T., & Williams, O. (2013). Mixed tracking and projective synchronization of 5D hyperchaotic system using active control. Cybernetics and Physics, 2, 31–36.

    Google Scholar 

  33. Ojo, K. S., Njah, A., Ogunjo, S. T., & Olusola, O. I. (2014). Reduced order function projective combination synchronization of three Josephson junctions using backstepping technique. Nonlinear Dynamics and System Theory, 14(2), 119.

    MathSciNet  MATH  Google Scholar 

  34. Ojo, K. S., Njah, A. N. A., Ogunjo, S. T., Olusola, O. I., et al. (2014). Reduced order hybrid function projective combination synchronization of three Josephson junctions. Archives of Control Sciences, 24(1), 99–113.

    Google Scholar 

  35. Ojo, K. S., Ogunjo, S. T., Njah, A. N., & Fuwape, I. A. (2014). Increased-order generalized synchronization of chaotic and hyperchaotic systems, 84(1), 1–13. doi:10.1007/s12043-014-0835-1.

  36. Ouannas, A., Azar, A. T., & Vaidyanathan, S. (2016). A robust method for new fractional hybrid chaos synchronization. Mathematical Methods in the Applied Sciences, n/a–n/a. doi:10.1002/mma.4099.

  37. Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical Review Letters, 64, 821–824.

    Article  MathSciNet  MATH  Google Scholar 

  38. Ramasubramanian, K., & Sriram, M. S. (2000). A comparative study of computation of lyapunov spectra with different algorithms. Physica D, 138(1–2), 72–86.

    Article  MathSciNet  MATH  Google Scholar 

  39. Sivakumar, B. (2004). Chaos theory in geophysics: Past, present and future. Chaos, Solitons and Fractals, 19, 441–462.

    Article  MathSciNet  MATH  Google Scholar 

  40. Strogatz, S. H. (1994). Nonlinear dynamics and chaos. Reading: Addison-Wesley.

    Google Scholar 

  41. Wang, X., & Song, J. (2009). Synchronization of the fractional order hyperchaos lorenz system usin activstion feedback control. Communications in Nonlinear Science and Numerical Simulation, 14, 3351–3357.

    Article  MATH  Google Scholar 

  42. Wu, C. W., & Chua, L. O. (1994). A unified framework for synchronization and control of dynamical systems. International Journal of Bifurcation and Chaos, 4(4), 979–998.

    Article  MathSciNet  MATH  Google Scholar 

  43. Xiao, W., Fu, J., Liu, Z., & Wan, W. (2012). Generalized synchronization of typical fractional order chaos system. Journal of Computers, 7(6), 1519–1526. doi:10.4304/jcp.7.6.1519-1526.

    Article  Google Scholar 

  44. Zhou, P., Ding, R., & Cao, Y. X. (2012). Multi drive-one response synchronization for fractional-order chaotic systems. Nonlinear Dynamics, 70(2), 1263–1271. doi:10.1007/s11071-012-0531-y.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Ogunjo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ogunjo, S.T., Ojo, K.S., Fuwape, I.A. (2017). Comparison of Three Different Synchronization Schemes for Fractional Chaotic Systems. In: Azar, A., Vaidyanathan, S., Ouannas, A. (eds) Fractional Order Control and Synchronization of Chaotic Systems. Studies in Computational Intelligence, vol 688. Springer, Cham. https://doi.org/10.1007/978-3-319-50249-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50249-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50248-9

  • Online ISBN: 978-3-319-50249-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics