Probabilistic Modelling of Station Locations in Bicycle-Sharing Systems

  • Daniël ReijsbergenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9946)


We present a simulation methodology for generating the locations of stations in Bicycle-Sharing Systems. We present several methods that are inspired by the literature on spatial point processes. We evaluate how the artificially generated systems compare to existing systems through a case study involving 11 cities worldwide. The method that is found to perform best is a data-driven approach in which we use a dataset of places of interest in the city to ‘rate’ how attractive city areas are for station placement. The presented methods use only non-proprietary data readily available via the Internet.


Point Process Target Area Minimum Span Tree Poisson Point Process Deterministic Optimisation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the EU project QUANTICOL, 600708. The author would like to thank Vashti Galpin and Jane Hillston for their helpful feedback on an earlier version of this paper.


  1. 1.
    CityBikes API. Accessed 28 Aug 2015
  2. 2.
    Bao, S., Xiao, N., Lai, Z., Zhang, H., Kim, C.: Optimizing watchtower locations for forest fire monitoring using location models. Fire Saf. J. 71, 100–109 (2015)CrossRefGoogle Scholar
  3. 3.
    Chen, L., Zhang, D., Pan, G., Ma, X., Yang, D., Kushlev, K., Zhang, W., Li, S.: Bike sharing station placement leveraging heterogeneous urban open data. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 571–575. ACM (2015)Google Scholar
  4. 4.
    Côme, E., Oukhellou, L.: Model-based count series clustering for bike sharing system usage mining: a case study with the Vélib’ system of Paris. ACM Trans. Intell. Syst. Technol. (TIST) 5(3), 39 (2014)Google Scholar
  5. 5.
    Croci, E., Rossi, D.: Optimizing the position of bike sharing stations. The Milan Case (2014)Google Scholar
  6. 6.
    Decreusefond, L., Flint, I., Vergne, A.: Efficient simulation of the Ginibre point process. arXiv preprint arXiv:1310.0800 (2013)
  7. 7.
    Fishman, E.: Bikeshare: a review of recent literature. Transp. Rev. 36, 92–113 (2016)CrossRefGoogle Scholar
  8. 8.
    Frade, I., Ribeiro, A.: Bike-sharing stations: a maximal covering location approach. Transp. Res. Part A Policy Pract. 82, 216–227 (2015)CrossRefGoogle Scholar
  9. 9.
    Froehlich, J., Neumann, J., Oliver, N.: Sensing and predicting the pulse of the city through shared bicycling. IJCAI 9, 1420–1426 (2009)Google Scholar
  10. 10.
    García-Palomares, J.C., Gutiérrez, J., Latorre, M.: Optimizing the location of stations in bike-sharing programs: a GIS approach. Appl. Geogr. 35(1), 235–246 (2012)CrossRefGoogle Scholar
  11. 11.
    Gast, N., Massonnet, G., Reijsbergen, D., Tribastone, M.: Probabilistic forecasts of bike-sharing systems for journey planning. In: The 24th ACM International Conference on Information and Knowledge Management (CIKM 2015) (2015)Google Scholar
  12. 12.
    Gol, E.A., Bartocci, E., Belta, C.: A formal methods approach to pattern synthesis in reaction diffusion systems. In: 2014 IEEE 53rd Annual Conference on Decision and Control, pp. 108–113. IEEE (2014)Google Scholar
  13. 13.
    Guenther, M.C., Bradley, J.T.: Journey data based arrival forecasting for bicycle hire schemes. In: Dudin, A., Turck, K. (eds.) ASMTA 2013. LNCS, vol. 7984, pp. 214–231. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39408-9_16 CrossRefGoogle Scholar
  14. 14.
    Haklay, M., Weber, P.: Openstreetmap: user-generated street maps. IEEE Pervasive Comput. 7(4), 12–18 (2008)CrossRefGoogle Scholar
  15. 15.
    Jäppinen, S., Toivonen, T., Salonen, M.: Modelling the potential effect of shared bicycles on public transport travel times in Greater Helsinki: an open data approach. Appl. Geogr. 43, 13–24 (2013)CrossRefGoogle Scholar
  16. 16.
    Lathia, N., Ahmed, S., Capra, L.: Measuring the impact of opening the London shared bicycle scheme to casual users. Transp. Res. Part C Emerg. Technol. 22, 88–102 (2012)CrossRefGoogle Scholar
  17. 17.
    Liu, J., Li, Q., Qu, M., Chen, W., Yang, J., Hui, X., Zhong, H., Fu, Y.: Station site optimization in bike sharing systemsGoogle Scholar
  18. 18.
    Meddin, R., DeMaio, P.: The bike-sharing world map. Accessed 28 Jan 2015
  19. 19.
    Miyoshi, N., Shirai, T., et al.: A cellular network model with Ginibre configured base stations. Adv. Appl. Probab. 46(3), 832–845 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Nair, R., Miller-Hooks, E., Hampshire, R.C., Bušić, A.: Large-scale vehicle sharing systems: analysis of Vélib’. Int. J. Sustain. Transp. 7(1), 85–106 (2013)CrossRefGoogle Scholar
  21. 21.
    O’Brien, O., Cheshire, J., Batty, M.: Mining bicycle sharing data for generating insights into sustainable transport systems. J. Transp. Geogr. 34, 262–273 (2014)CrossRefGoogle Scholar
  22. 22.
    Tsai, Y.S., Ko, P.C.I., Huang, C.Y., Wen, T.H.: Optimizing locations for the installation of automated external defibrillators (AEDs) in urban public streets through the use of spatial and temporal weighting schemes. Appl. Geogr. 35(1), 394–404 (2012)CrossRefGoogle Scholar
  23. 23.
    Tu, W., Li, Q., Fang, Z., Shaw, S.I., Zhou, B., Chang, X.: Optimizing the locations of electric taxi charging stations: a spatial-temporal demand coverage approach. Transp. Res. Part C Emerg. Technol. 65, 172–189 (2016)CrossRefGoogle Scholar
  24. 24.
    Zhang, Y., Zuidgeest, M., Brussel, M., Sliuzas, R., van Maarseveen, M.: Spatial location-allocation modeling of bike sharing systems: a literature search. In: Proceedings of the 13th World Conference on Transportation Research (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.University of EdinburghEdinburghUK

Personalised recommendations