Advertisement

Towards Model-Based Optimisation: Using Domain Knowledge Explicitly

  • Steffen Zschaler
  • Lawrence Mandow
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9946)

Abstract

Search-based software engineering (SBSE) treats software-design problems as search and optimisation problems addressing them by applying automated search and optimisation algorithms. A key concern is the adequate capture and representation of the structure of design problems. Model-driven engineering (MDE) has a strong focus on domain-specific languages (DSLs) which are defined through meta-models, capturing the structure and constraints of a particular domain. There is, thus, a clear argument for combining both techniques to obtain the best of both worlds. Some authors have proposed a number of approaches in recent years, but these have mainly focused on the optimisation of transformations or on the identification of good generic encodings of models for search. In this paper, we first provide a structured overview of the current state of the art before identifying limitations of the key proposals (transformation optimisation and generic genetic encodings of models). We then present a first prototype for running search algorithms directly on models themselves (rather than a separate representation) and derive key research challenges for this approach to model optimisation.

Keywords

Evolutionary optimisation Object space Model-driven engineering Model transformations 

References

  1. 1.
    Harman, M., Jones, B.F.: Search-based software engineering. Inf. Softw. Technol. 43(14), 833–839 (2001)CrossRefGoogle Scholar
  2. 2.
    Efstathiou, D., McBurney, P., Zschaler, S., Bourcier, J.: Efficient multi-objective optimisation of service compositions in mobile ad hoc networks using lightweight surrogate models. JUCS 20(8), 1089–1108 (2014). Special issue on WAS4FI 2013Google Scholar
  3. 3.
    Chatziprimou, K., Lano, K., Zschaler, S.: Surrogate-assisted online optimisation of cloud iaas configurations. In: IEEE 6th International Conference on Cloud Computing Technology and Science (CloudCom), pp. 138–145 (2014)Google Scholar
  4. 4.
    Burton, F.R., Poulding, S.: Complementing metaheuristic search with higher abstraction techniques. In: 1st International Workshop Combining Modelling and Search-Based Software Engineering (CMSBSE 2013), pp. 45–48 (2013)Google Scholar
  5. 5.
    Kessentini, M., Langer, P., Wimmer, M.: Searching models, modeling search: on the synergies of SBSE and MDE. In: 1st International Workshop Combining Modelling and Search-Based Software Engineering (CMSBSE 2013), pp. 51–54 (2013)Google Scholar
  6. 6.
    Fleck, M., Troya, J., Wimmer, M.: Marrying search-based optimization and model transformation technology. In: Proceedings of 1st North American Search Based Software Engineering Symposium (NasBASE 2015) (2015). http://martin-fleck.github.io/momot/downloads/NasBASE_MOMoT.pdf
  7. 7.
    Drago, M.L., Ghezzi, C., Mirandola, R.: QVTR2: a rational and performance-aware extension to the relations language. In: Dingel, J., Solberg, A. (eds.) MODELS 2010. LNCS, vol. 6627, p. 328. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21210-9_31 CrossRefGoogle Scholar
  8. 8.
    Drago, M.L., Ghezzi, C., Mirandola, R.: Towards quality driven exploration of model transformation spaces. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 2–16. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24485-8_2 CrossRefGoogle Scholar
  9. 9.
    Drago, M.L., Ghezzi, C., Mirandola, R.: A quality driven extension to the QVT-relations transformation language. Comput. Sci. Res. Dev. 30(1), 1–20 (2015). First online: 24 November 2011CrossRefGoogle Scholar
  10. 10.
    Williams, J.R.: A Novel Representation for Search-Based Model-Driven Engineering. Ph.d. thesis. University of York (2013)Google Scholar
  11. 11.
    Efstathiou, D., Williams, J.R., Zschaler, S.: Crepe complete: multi-objective optimisation for your models. In: Proceedings of 1st International Workshop on Combining Modelling with Search- and Example-Based Approaches (CMSEBA 2014) (2014)Google Scholar
  12. 12.
    Denil, J., Jukss, M., Verbrugge, C., Vangheluwe, H.: Search-based model optimization using model transformations. In: Amyot, D., Fonseca i Casas, P., Mussbacher, G. (eds.) SAM 2014. LNCS, vol. 8769, pp. 80–95. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-11743-0_6 Google Scholar
  13. 13.
    Abdeen, H., Varró, D., Sahraoui, H., Nagy, A.S., Debreceni, C., Hegedüs, Á., Horváth, Á.: Multi-objective optimization in rule-based design space exploration. In: Crnkovic, I., Chechik, M., Grünbacher, P. (eds.): Proceedings of 29th ACM/IEEE International Conference Automated Software Engineering (ASE 2014), pp. 289–300. ACM (2014)Google Scholar
  14. 14.
    Horváth, Á., Varró, D.: CSP(M): constraint satisfaction problem over models. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 107–121. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04425-0_9 CrossRefGoogle Scholar
  15. 15.
    Hegedüs, Á., Horváth, Á., Ráth, I., Varró, D.: A model-driven framework for guided design space exploration. In: Proceedings of 26th IEEE/ACM International Conference Automated Software Engineering (ASE 2011), pp. 173–182, November 2011Google Scholar
  16. 16.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  17. 17.
    Burton, F.R., Paige, R.F., Rose, L.M., Kolovos, D.S., Poulding, S., Smith, S.: Solving acquisition problems using model-driven engineering. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 428–443. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31491-9_32 CrossRefGoogle Scholar
  18. 18.
    Mandow, L., Montenegro, J.A., Zschaler, S.: Mejora de una representación genética genérica para modelos. In: Actas de la XVII Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA 2016) (2016, in press)Google Scholar
  19. 19.
    Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng. Methodol. 11(2), 256–290 (2002)CrossRefGoogle Scholar
  20. 20.
    Sen, S., Baudry, B., Mottu, J.M.: On combining multi-formalism knowledge to select models for model transformation testing. In: Proceedings of 1st International Conference on Software Testing, Verification, and Validation, pp. 328–337 (2008)Google Scholar
  21. 21.
    Sen, S., Baudry, B., Mottu, J.-M.: Automatic model generation strategies for model transformation testing. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 148–164. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02408-5_11 CrossRefGoogle Scholar
  22. 22.
    Kolovos, D.S.: Establishing correspondences between models with the epsilon comparison language. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 146–157. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02674-4_11 CrossRefGoogle Scholar
  23. 23.
    Kolovos, D.S., Ruscio, D.D., Pierantonio, A., Paige, R.F.: Different models for model matching: an analysis of approaches to support model differencing. In: Proceedings of ICSE Workshop on Comparison and Versioning of Software Models (CVSM 2009). IEEE Computer Society, pp. 1–6 (2009)Google Scholar
  24. 24.
    Maoz, S., Ringert, J.O., Rumpe, B.: A manifesto for semantic model differencing. In: Dingel, J., Solberg, A. (eds.) MODELS 2010. LNCS, vol. 6627, pp. 194–203. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21210-9_19 CrossRefGoogle Scholar
  25. 25.
    Langer, P., Mayerhofer, T., Kappel, G.: Semantic model differencing utilizing behavioral semantics specifications. In: Dingel, J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp. 116–132. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-11653-2_8 Google Scholar
  26. 26.
    Amstel, M., Bosems, S., Kurtev, I., Ferreira Pires, L.: Performance in model transformations: experiments with ATL and QVT. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707, pp. 198–212. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21732-6_14 CrossRefGoogle Scholar
  27. 27.
    Mészáros, T., Mezei, G., Levendovszky, T., Asztalos, M.: Manual and automated performance optimization of model transformation systems. Int. J. Softw. Tools Technol. Transf. 12(3), 231–243 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of InformaticsKing’s College LondonLondonUK
  2. 2.Departamento de Lenguajes y Ciencias de la ComputaciónUniversidad de MálagaMálagaSpain

Personalised recommendations