Skip to main content

Using CNN to Classify Hyperspectral Data Based on Spatial-spectral Information

  • Conference paper
  • First Online:
Advances in Intelligent Information Hiding and Multimedia Signal Processing

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 64))

Abstract

Currently, the dimensionality of hyperspectral images is increasing, and the images have the characteristics of nonlinearity and spatial correlation, making it more and more difficult to classify these data. In this study, convolutional neural network (CNN) which has been successfully applied in image recognition and language detection is introduced. The spectral and spatial information is combined and used for hyperspectral image classification. According to the character of CNN that its input is two-dimensional image data, two methods are proposed converting the spectral and spatial information of hyperspectral images into two dimensional images. One of them converts the spatial-spectral information into gray level images and uses the varying texture features between spectral bands. The other converts the spatial-spectral information into waveforms and uses the wave characteristics of the spectral bands. Experiments on KSC and Pavia U data sets demonstrate the feasibility and efficacy of CNN in hyperspectral image classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachmann, C.M., Ainsworth, T.L.,Fusina, R.A.: Improved manifold coordinate representations of large-scale hyperspectral scenes. J. Geo. and Remo. Sens. 44, 2786–2803 (2006).

    Google Scholar 

  2. Mura, M.D., Villa, A., Benediktsson, J.A., Chanussot, J.,Bruzzone, L.: Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis. J. Geos. and Remo. Sens. Lett. 8, 542–546 (2011)

    Google Scholar 

  3. Mianji, F.A., Zhang, Y.: Robust hyperspectral classification using relevance vector machine. J. Geos. and Remo. Sens. 49, 2100–2112 (2011)

    Google Scholar 

  4. Tarabalka, Y., Chanussot, J., Benediktsson, J.A.: Segmentation and classification of hyperspectral images using watershed transformation. J. Patt. Reco. 43, 2367–2379 (2010)

    Google Scholar 

  5. Tarabalka, Y., Benediktsson, J.A., Chanussot, J.: SpectralCspatial classification of hyperspectral imagery based on partitional clustering techniques. J. IEEE TGRS. 47, 2973–2987 (2009)

    Google Scholar 

  6. Valero, S., Salembier, P., Chanussot, J.: Hyperspectral image representation and processing with binary partition trees. J. IEEE TIP. 22, 1430–1443 (2013)

    Google Scholar 

  7. Tarabalka, Y., Benediktsson, J.A., Chanussot, J., Tilton, J.C.: Multiple spectralCspatial classification approach for hyperspectral data. J. IEEE TGRS.48, 4122–4132 (2010)

    Google Scholar 

  8. Tarabalka, Y., Fauvel, M., Chanussot, J., Benediktsson, J.A.: SVM-and MRF-based method for accurate classification of hyperspectral images. J. IEEE GRSL. 7, 736–740 (2010)

    Google Scholar 

  9. Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification using dictionary-based sparse representation. J. IEEE TGRS. 49, 3973–3985 (2011)

    Google Scholar 

  10. Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification via kernel sparse representation. J. IEEE TGRS. 51, 217–231 (2013)

    Google Scholar 

  11. Fang, L., Li, S., Kang, X., Benediktsson, J.A.: SpectralCspatial hyperspectral image classification via multiscale adaptive sparse representation. J. IEEE TGRS. 52, 7738–7749 (2014)

    Google Scholar 

  12. Zhang, H., Li, J., Huang, Y., Zhang, L.: A nonlocal weighted joint sparse representation classification method for hyperspectral imagery. J. IEEE JSTAEORS. 7, 2056–2065 (2014)

    Google Scholar 

  13. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. J. Science. 313, 504–507 (2006)

    Google Scholar 

  14. Dahl, G.E., Dong, Y., Li, D., Acero, A.: Large vocabulary continuous speech recognition with context-dependent DBN-HMMS. In: IEEE ICASSP, pp. 4688–4691. IEEE (2011)

    Google Scholar 

  15. Mohamed, A., Sainath, T.N., Dahl, G., Ramabhadran, B.: Deep belief networks using discriminative features for phone recognition. In: ICASSP, pp. 5060–5063. IEEE (2011)

    Google Scholar 

  16. Nair, V., Hinton, G.E.: 3D object recognition with deep belief nets. In: ANIPS, pp. 1339–1347 (2009)

    Google Scholar 

  17. Fasel, I., Berry, J., Deep belief networks for real-time extraction of tongue contours from ultrasound during speech. In: 20th ICPR, pp. 1493–1496. IEEE (2010)

    Google Scholar 

  18. Deselaers, T., Hasan, S., Bender, O., Ney, H.: A deep learning approach to machine transliteration. In: PFWSMT, pp. 233–241 (2009)

    Google Scholar 

  19. Li, D., Seltzer, M.L., Dong, Y., Acero, A., Mohamed, A.R., Hinton, G.E.: Binary coding of speech spectrograms using a deep auto-encoder In: Interspeech, pp. 1692–1695 (2010)

    Google Scholar 

  20. LeCun, Y., Boser, B., Denker, J.S., Henderson, D.: Backpropagation applied to handwritten zip code recognition. J. Neural Comp. 1, 541–551 (1989)

    Google Scholar 

  21. Rosenblatt, F.: The perceptrona probabilistic model for information storage and organization in the brain. J. Psyc. Rev. 65, 386 (1958)

    Google Scholar 

  22. Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification of hyperspectral data. J. Sel. Top. in Appl. Earth Observ. and Remo. Sens. 7, 2094–2107(2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianlei Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lin, L., Song, X. (2017). Using CNN to Classify Hyperspectral Data Based on Spatial-spectral Information. In: Pan, JS., Tsai, PW., Huang, HC. (eds) Advances in Intelligent Information Hiding and Multimedia Signal Processing. Smart Innovation, Systems and Technologies, vol 64. Springer, Cham. https://doi.org/10.1007/978-3-319-50212-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50212-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50211-3

  • Online ISBN: 978-3-319-50212-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics