Residual Coding

  • Tom BäckströmEmail author
Part of the Signals and Communication Technology book series (SCT)


The spectral envelope and fundamental frequency of a speech signal is generally modelled by linear, short- and long-term predictive synthesis filters. The residual from these two filters is a signal without almost any temporal correlation. In this section we describe modelling and optimisation of the residual quantisation. The most famous approach is algebraic coding, which has also given the name to algebraic code-excited linear prediction (ACELP). It assumes that the residual signal follows the Laplace distribution and provides an enumeration method, the algebraic code, with which every possible quantisation can be encoded.


Vocal Tract Laplacian Distribution Uncorrelated Noise Pulse Position Codebook Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    3GPP. TS 26.190, Adaptive Multi-Rate (AMR-WB) speech codec (2007)Google Scholar
  2. 2.
    Adoul, J.-P., Laflamme, C.: Dynamic codebook for efficient speech coding based on algebraic codes, August 22 1995. US Patent 5,444,816 (1995)Google Scholar
  3. 3.
    Adoul, J.-P., Laflamme, C.: Depth-first algebraic-codebook search for fast coding of speech, December 23 1997. US Patent 5,701,392 (1997)Google Scholar
  4. 4.
    Adoul, J.-P., Laflamme, C.: Fast sparse-algebraic-codebook search for efficient speech coding, December 16 1997. US Patent 5,699,482 (1997)Google Scholar
  5. 5.
    Adoul, J.-P., Laflamme, C.: Algebraic codebook with signal-selected pulse amplitude/position combinations for fast coding of speech, May 19 1998. US Patent 5,754,976 (1998)Google Scholar
  6. 6.
    Adoul, J.-P., Mabilleau, P., Delprat, M., Morissette, S.: Fast CELP coding based on algebraic codes. In: Proceedings of ICASSP, vol. 12, pp. 1957–1960. IEEE (1987)Google Scholar
  7. 7.
    Amada, T., Miseki, K, Akamine, M.: CELP speech coding based on an adaptive pulse position codebook. In: Proceedings of ICASSP, vol. 1, pp. 13–16. IEEE (1999)Google Scholar
  8. 8.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley, Hoboken (2013)zbMATHGoogle Scholar
  9. 9.
    Byun, K.J., Jung, H.B., Hahn, M., Kim, K.S.: A fast ACELP codebook search method. In: 2002 6th International Conference on Signal Processing, vol. 1, pp. 422–425 (2002)Google Scholar
  10. 10.
    Bäckström, T.: Enumerative algebraic coding for ACELP. In: Proceedings of Interspeech (2012)Google Scholar
  11. 11.
    Bäckström, T.: Computationally efficient objective function for algebraic codebook optimization in ACELP. In: Proceedings of Interspeech (2013)Google Scholar
  12. 12.
    Bäckström, T., Helmrich, C.R.: Decorrelated innovative codebooks for ACELP using factorization of autocorrelation matrix. In: Proceedings of Interspeech, pp. 2794–2798 (2014)Google Scholar
  13. 13.
    Chen, F.K., Yang, J.F., Yan, Y.L.: Candidate scheme for fast ACELP search. In: IEE Proceedings-Vision, Image and Signal Processing, vol. 149(1), pp. 10–16. IET (2002)Google Scholar
  14. 14.
    Gerson, I.A., Jasiuk, M.A.: Techniques for improving the performance of CELP-type speech coders. IEEE J. Sel. Areas Commun. 10(5), 858–865 (1992)CrossRefGoogle Scholar
  15. 15.
    Ha, N.K.: A fast search method of algebraic codebook by reordering search sequence. Proc. ICASSP 1, 21–24 (1999)Google Scholar
  16. 16.
    Kataoka, A., Moriya, T., Hayashi, S.: An 8-bit/s speech coder based on conjugate structure CELP. In: Proceddings of ICASSP, vol. 2, pp. 592–595. IEEE (1993)Google Scholar
  17. 17.
    Kroon, p., Deprettere, E.F.: A class of analysis-by-synthesis predictive coders for high quality speech coding at rates between 4.8 and 16 kbit/s. IEEE J. Sel. Areas Commun. 6(2), 353–363 (1988)Google Scholar
  18. 18.
    Laflamme, C., Adoul, J.P., Su, H.Y., Morissette, S.: On reducing computational complexity of codebook search in CELP coder through the use of algebraic codes. In: Proceedings of ICASSP, pp. 177–180. IEEE (1990)Google Scholar
  19. 19.
    Laflamme, C., Adoul, J.-P., Salami, R., Morissette, S., Mabilleau, P.: 16 kbps wideband speech coding technique based on algebraic celp. In: Proceedings of ICASSP, pp. 13–16. IEEE (1991)Google Scholar
  20. 20.
    Lee, E.-D., Ahn, J.-M.: Efficient fixed codebook search method for ACELP speech codecs. In: International Conference on Hybrid Information Technology, pp. 178–187. Springer (2006)Google Scholar
  21. 21.
    Lee, D.E., Yun, S.H., Lee, S.I., Ahn, J.M.: Iteration-free pulse replacement method for algebraic codebook search. Electron. Lett. 43(1), 59–60 (2007)CrossRefGoogle Scholar
  22. 22.
    Ramirez, M.A., Gerken, M.: Efficient algebraic multipulse search. In: Telecommunications Symposium, 1998. ITS’98 Proceedings. SBT/IEEE International, pp. 231–236 (1998)Google Scholar
  23. 23.
    Salami, R., Laflamme, C., Adoul, J.P., Kataoka, A., Hayashi, S., Moriya, T., Lamblin, C., Massaloux, D., Proust, S., Kroon, P., et al.: Design and description of CS-ACELP: A toll quality 8 kb/s speech coder. IEEE Trans. Speech Audio Process. 6(2), 116–130 (1998)CrossRefGoogle Scholar
  24. 24.
    Sanchez, V.E., Adoul, J.-P.: Low-delay wideband speech coding using a new frequency domain approach. In: Proceedings of ICASSP, vol. 2, pp. 415–418. IEEE (1993)Google Scholar
  25. 25.
    Tsai, S.-M., Yang, J.-F.: Efficient algebraic code-excited linear predictive codebook search. IEE Proc.-Vis. Image Signal Process. 153(6), 761–768 (2006)CrossRefGoogle Scholar
  26. 26.
    Xie, M., Adoul, J.-P.: Embedded algebraic vector quantizers (EAVQ) with application to wideband speech coding. In: Proceedings of ICASSP, vol. 1, pp. 240–243. IEEE (1996)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.International Audio Laboratories Erlangen (AudioLabs)Friedrich-Alexander University Erlangen-Nürnberg (FAU)ErlangenGermany

Personalised recommendations