Skip to main content

Residual Coding

  • Chapter
  • First Online:
Speech Coding

Part of the book series: Signals and Communication Technology ((SCT))

  • 1068 Accesses

Abstract

The spectral envelope and fundamental frequency of a speech signal is generally modelled by linear, short- and long-term predictive synthesis filters. The residual from these two filters is a signal without almost any temporal correlation. In this section we describe modelling and optimisation of the residual quantisation. The most famous approach is algebraic coding, which has also given the name to algebraic code-excited linear prediction (ACELP). It assumes that the residual signal follows the Laplace distribution and provides an enumeration method, the algebraic code, with which every possible quantisation can be encoded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The matrix A is, depending on definition, either a lower triangular or a convolution matrix, both of which are Toeplitz matrices. That is, a column can be obtained by shifting the previous column.

References

  1. 3GPP. TS 26.190, Adaptive Multi-Rate (AMR-WB) speech codec (2007)

    Google Scholar 

  2. Adoul, J.-P., Laflamme, C.: Dynamic codebook for efficient speech coding based on algebraic codes, August 22 1995. US Patent 5,444,816 (1995)

    Google Scholar 

  3. Adoul, J.-P., Laflamme, C.: Depth-first algebraic-codebook search for fast coding of speech, December 23 1997. US Patent 5,701,392 (1997)

    Google Scholar 

  4. Adoul, J.-P., Laflamme, C.: Fast sparse-algebraic-codebook search for efficient speech coding, December 16 1997. US Patent 5,699,482 (1997)

    Google Scholar 

  5. Adoul, J.-P., Laflamme, C.: Algebraic codebook with signal-selected pulse amplitude/position combinations for fast coding of speech, May 19 1998. US Patent 5,754,976 (1998)

    Google Scholar 

  6. Adoul, J.-P., Mabilleau, P., Delprat, M., Morissette, S.: Fast CELP coding based on algebraic codes. In: Proceedings of ICASSP, vol. 12, pp. 1957–1960. IEEE (1987)

    Google Scholar 

  7. Amada, T., Miseki, K, Akamine, M.: CELP speech coding based on an adaptive pulse position codebook. In: Proceedings of ICASSP, vol. 1, pp. 13–16. IEEE (1999)

    Google Scholar 

  8. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  9. Byun, K.J., Jung, H.B., Hahn, M., Kim, K.S.: A fast ACELP codebook search method. In: 2002 6th International Conference on Signal Processing, vol. 1, pp. 422–425 (2002)

    Google Scholar 

  10. Bäckström, T.: Enumerative algebraic coding for ACELP. In: Proceedings of Interspeech (2012)

    Google Scholar 

  11. Bäckström, T.: Computationally efficient objective function for algebraic codebook optimization in ACELP. In: Proceedings of Interspeech (2013)

    Google Scholar 

  12. Bäckström, T., Helmrich, C.R.: Decorrelated innovative codebooks for ACELP using factorization of autocorrelation matrix. In: Proceedings of Interspeech, pp. 2794–2798 (2014)

    Google Scholar 

  13. Chen, F.K., Yang, J.F., Yan, Y.L.: Candidate scheme for fast ACELP search. In: IEE Proceedings-Vision, Image and Signal Processing, vol. 149(1), pp. 10–16. IET (2002)

    Google Scholar 

  14. Gerson, I.A., Jasiuk, M.A.: Techniques for improving the performance of CELP-type speech coders. IEEE J. Sel. Areas Commun. 10(5), 858–865 (1992)

    Article  Google Scholar 

  15. Ha, N.K.: A fast search method of algebraic codebook by reordering search sequence. Proc. ICASSP 1, 21–24 (1999)

    Google Scholar 

  16. Kataoka, A., Moriya, T., Hayashi, S.: An 8-bit/s speech coder based on conjugate structure CELP. In: Proceddings of ICASSP, vol. 2, pp. 592–595. IEEE (1993)

    Google Scholar 

  17. Kroon, p., Deprettere, E.F.: A class of analysis-by-synthesis predictive coders for high quality speech coding at rates between 4.8 and 16 kbit/s. IEEE J. Sel. Areas Commun. 6(2), 353–363 (1988)

    Google Scholar 

  18. Laflamme, C., Adoul, J.P., Su, H.Y., Morissette, S.: On reducing computational complexity of codebook search in CELP coder through the use of algebraic codes. In: Proceedings of ICASSP, pp. 177–180. IEEE (1990)

    Google Scholar 

  19. Laflamme, C., Adoul, J.-P., Salami, R., Morissette, S., Mabilleau, P.: 16 kbps wideband speech coding technique based on algebraic celp. In: Proceedings of ICASSP, pp. 13–16. IEEE (1991)

    Google Scholar 

  20. Lee, E.-D., Ahn, J.-M.: Efficient fixed codebook search method for ACELP speech codecs. In: International Conference on Hybrid Information Technology, pp. 178–187. Springer (2006)

    Google Scholar 

  21. Lee, D.E., Yun, S.H., Lee, S.I., Ahn, J.M.: Iteration-free pulse replacement method for algebraic codebook search. Electron. Lett. 43(1), 59–60 (2007)

    Article  Google Scholar 

  22. Ramirez, M.A., Gerken, M.: Efficient algebraic multipulse search. In: Telecommunications Symposium, 1998. ITS’98 Proceedings. SBT/IEEE International, pp. 231–236 (1998)

    Google Scholar 

  23. Salami, R., Laflamme, C., Adoul, J.P., Kataoka, A., Hayashi, S., Moriya, T., Lamblin, C., Massaloux, D., Proust, S., Kroon, P., et al.: Design and description of CS-ACELP: A toll quality 8 kb/s speech coder. IEEE Trans. Speech Audio Process. 6(2), 116–130 (1998)

    Article  Google Scholar 

  24. Sanchez, V.E., Adoul, J.-P.: Low-delay wideband speech coding using a new frequency domain approach. In: Proceedings of ICASSP, vol. 2, pp. 415–418. IEEE (1993)

    Google Scholar 

  25. Tsai, S.-M., Yang, J.-F.: Efficient algebraic code-excited linear predictive codebook search. IEE Proc.-Vis. Image Signal Process. 153(6), 761–768 (2006)

    Article  Google Scholar 

  26. Xie, M., Adoul, J.-P.: Embedded algebraic vector quantizers (EAVQ) with application to wideband speech coding. In: Proceedings of ICASSP, vol. 1, pp. 240–243. IEEE (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Bäckström .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bäckström, T. (2017). Residual Coding. In: Speech Coding. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-50204-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50204-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50202-1

  • Online ISBN: 978-3-319-50204-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics