Speech Coding pp 161-184 | Cite as

Packet Loss and Concealment

  • Jérémie Lecomte
  • Tom BäckströmEmail author
Part of the Signals and Communication Technology book series (SCT)


Transmission over real-world networks will occasionally suffer from transmission errors, which can significantly deteriorate the perceived quality of a speech codec. This chapter addresses the problem of transmission errors in packet based voice applications, such as voice over Internet protocol (VoIP). A broad range of techniques for recovery from packet loss on the channel are presented, from channel coding to techniques using speech signal processing methods, as well as both sender-driven and receiver-based methods. The sender based methods include for example retransmission, interleaving and forward error correction (both media-specific as well as media-independent), whereas receiver-based techniques include noise substitution, repetition and synchronisation methods.


Packet Loss Forward Error Correction Packet Loss Rate Voice Over Internet Protocol Concealment Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    3GPP. TS 26.402 Enhanced aacPlus general audio codec; Additional decoder tools (Release 11) (2012)Google Scholar
  2. 2.
    Atti, V., Sinder, D.J., Subasingha, S., Rajendran, V., Dewasurendra, D.,  Chebiyyam, V., Varga, I., Krishnan, V., Schubert, B., Lecomte, J., et al.: Improved error resilience for VoLTE and VoIP with 3GPP EVS channel aware coding. In: Proceedings of the ICASSP, pp. 5713–5717. IEEE (2015)Google Scholar
  3. 3.
    Bäckström, T., Ghido, F., Fischer, J.: Blind recovery of perceptual models in distributed speech and audio coding. In: Proceedings of the Interspeech (2016)Google Scholar
  4. 4.
    Benesty, J., Sondhi, M., Huang, Y.: Springer Handbook of Speech Processing. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Bhute, V.P., Shrawankar, U.N.: Speech packet concealment techniques based on time-scale modification for voip. In: ICCSIT 2008, International Conference on Computer Science and Information Technology, pp. 825–828. IEEE (2008)Google Scholar
  6. 6.
    Boufounos, P.T., Baraniuk, R.G.: 1-bit compressive sensing. In: CISS 2008, 42nd Annual Conference on Information Sciences and Systems, pp. 16–21. IEEE (2008)Google Scholar
  7. 7.
    Dietz, M., Multrus, M., Eksler, V., Malenovsky, V., Norvell, E., Pobloth, H., Miao, L., Wang, Z., Laaksonen, L., Vasilache, A., Kamamoto, Y., Kikuiri, K., Ragot, S., Faure, J., Ehara, H., Rajendran, V., Atti, V., Sung, H., Oh, E., Yuan, H., Zhu, C.: Overview of the EVS codec architecture. In: Proceedings of the ICASSP, pp. 5698–5702. IEEE (2015)Google Scholar
  8. 8.
    Fairhurst, G., Wood, L.: RFC3366 Advice to link designers on link Automatic Repeat reQuest (ARQ). IETF (2002)Google Scholar
  9. 9.
    Fuchs, G., Multrus, M., Neuendorf, M., Geiger, R.: Mdct-based coder for highly adaptive speech and audio coding. In: Proceedings of the EUSIPCO, pp. 24–28 (2009)Google Scholar
  10. 10.
    Gournay, P., Rousseau, F., Lefebvre, R.: Improved packet loss recovery using late frames for prediction-based speech coders. In: Proceedings of the ICASSP, vol. 1, pp. I–108. IEEE (2003)Google Scholar
  11. 11.
    Goyal, V.K.: Multiple description coding: compression meets the network. IEEE Signal Process. Mag. 18(5), 74–93 (2001)CrossRefGoogle Scholar
  12. 12.
    Gruber, J., Strawczynski, Leo: Subjective effects of variable delay and speech clipping in dynamically managed voice systems. IEEE Trans. Commun. 33(8), 801–808 (1985)CrossRefGoogle Scholar
  13. 13.
    Han, S.: Contributions to Improved Hard- and Soft-Decision Decoding in Speech and Audio Codecs. Ph.D. thesis, Braunschweig University of Technology (2016)Google Scholar
  14. 14.
    Hess, W.: Pitch determination of speech signals: algorithms and devices. Pitch Determination of Speech Signals. Springer, Heidelberg (2012)Google Scholar
  15. 15.
    Laakso, T.I., Valimaki, V., Karjalainen, M., Laine, U.K.: Splitting the unit delay [FIR/all pass filters design]. IEEE Signal Process. Mag. 13(1), 30–60 (1996)CrossRefGoogle Scholar
  16. 16.
    Lecomte, J., Schnabel, M., Markovic, G., Dietz, M., Neugebauer, B.: Apparatus and method for improved concealment of the adaptive codebook in ACELP-like concealment employing improved pulse resynchronization, 24 December 2014. WO Patent App. PCT/EP2014/062,578Google Scholar
  17. 17.
    Lecomte, J., Schnabel, M., Markovic, G., Dietz, M., Neugebauer, B.: Apparatus and method for improved concealment of the adaptive codebook in a CELP-like concealment employing improved pulse resynchronization, 21 April 2016. US Patent 20,160,111,094Google Scholar
  18. 18.
    Lecomte, J., Vaillancourt, T., Bruhn, S., Sung, H., Peng, K., Kikuiri, K., Wang, B., Subasingha, S., Faure, J.: Packet-loss concealment technology advances in EVS. In: Proceedings of the ICASSP, pp. 5708–5712. IEEE (2015)Google Scholar
  19. 19.
    Lee, M.-K., Jung, S.-K., Kang, H.-G., Park, Y.-C., Youn, D.-H.: A packet loss concealment algorithm based on time-scale modification for celp-type speech coders. In: Proceedings of the ICASSP, vol. 1, pp. I–116. IEEE (2003)Google Scholar
  20. 20.
    Liang, Y.J., Farber, N., Girod, B.: Adaptive playout scheduling using time-scale modification in packet voice communications. In: Proceedings of the ICASSP, vol. 3, pp. 1445–1448. IEEE (2001)Google Scholar
  21. 21.
    Liu, F., Kim, J.W., Kuo, C.-C.J.: Adaptive delay concealment for internet voice applications with packet-based time-scale modification. In: Information Technologies 2000, pp. 91–102. International Society for Optics and Photonics (2001)Google Scholar
  22. 22.
    Lochart, G.B., Goodman, D.J.: Reconstruction of missing speech packets by waveform substitution. Signal Process. 3, 357–360 (1986)Google Scholar
  23. 23.
    Merazka, F.: A comparison of packet loss concealment and control for voice transmission over IP network services. In: 2014 9th International Symposium on Communication Systems, Networks Digital Signal Processing (CSNDSP), pp. 497–501, July 2014Google Scholar
  24. 24.
    Nagabuchi, H., Kitawaki, N.: Evaluation of coded speech quality degraded by cell loss in ATM networks. Electron. Commun. Jpn. (Part III: Fundam. Electron. Sci.) 75(9), 14–24 (1992)CrossRefGoogle Scholar
  25. 25.
    Perkins, C: RTP payload format for interleaved media. IETF Audio/Video Transport Working Group (1999)Google Scholar
  26. 26.
    Rizzo, L.: Effective erasure codes for reliable computer communication protocols. ACM SIGCOMM Comput. Commun. Rev. 27(2), 24–36 (1997)CrossRefGoogle Scholar
  27. 27.
    Rosenberg, J., Schulzrinne, H.: RFC 2733 An RTP Payload Format for Generic Forward Error Correction. IETF, December 1999Google Scholar
  28. 28.
    Sanneck, H., Stenger, A., Younes, K.B., Girod, B.: A new technique for audio packet loss concealment. In: GLOBECOM 1996, Communications: The Key to Global Prosperity, Global Telecommunications Conference, pp. 48–52. IEEE (1996)Google Scholar
  29. 29.
    Serizawa, M., Nozawa, Y.: A packet loss concealment method using pitch waveform repetition and internal state update on the decoded speech for the sub-band ADPCM wideband speech codec. In: Proceedings of the IEEE Workshop Speech Coding, pp. 68–70. IEEE (2002)Google Scholar
  30. 30.
    Vaillancourt, T., Jelinek, M., Salami, R., Lefebvre, R.: Efficient frame erasure concealment in predictive speech codecs using glottal pulse resynchronisation. In: Proceedings of the ICASSP, vol. 4, pp. IV–1113. IEEE (2007)Google Scholar
  31. 31.
    Verhelst, W., Roelands, M.: An overlap-add technique based on waveform similarity (WSOLA) for high quality time-scale modification of speech. In: Proceedings of the ICASSP, vol. 2, pp. 554–557. IEEE (1993)Google Scholar
  32. 32.
    Warren, R.M.: Auditory perception: An Analysis and Synthesis, vol. 109. Elsevier, Amsterdam (2013)Google Scholar
  33. 33.
    Wasem, O.J., Goodman, D.J., Dvorak, C.A., Page, H.G.: The effect of waveform substitution on the quality of pcm packet communications. IEEE Trans. Acoust. Speech, Signal Process. 36(3), 342–348 (1988)CrossRefGoogle Scholar
  34. 34.
    Xiong, Z., Liveris, A.D., Cheng, S.: Distributed source coding for sensor networks. IEEE Signal Process. Mag. 21(5), 80–94 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.International Audio Laboratories Erlangen (AudioLabs)Friedrich-Alexander University Erlangen-Nürnberg (FAU)ErlangenGermany

Personalised recommendations