Analytical Procedures

  • Richard K. Burdick
  • David J. LeBlond
  • Lori B. Pfahler
  • Jorge Quiroz
  • Leslie Sidor
  • Kimberly Vukovinsky
  • Lanju Zhang
Chapter
Part of the Statistics for Biology and Health book series (SBH)

Abstract

Analytical chemistry is used across the pharmaceutical industry to quantify and identify the components in drug substance, drug product, and raw material to ensure that the final dosage form remains safe and efficacious from lot release throughout the product’s shelf life. To understand any potential shifts in the components impacting safety and efficacy, laboratories require analytical procedures which are reliable, fit for purpose, and executed consistently over time. Analytical procedures provide the instructions used by the analyst to ensure consistent use of laboratory equipment, solution preparation, measurement recording, and documentation. As such, analytical procedures form a critical component in any quality system. This chapter considers statistical methods that ensure that these procedures are fit for their intended purpose.

Keywords

Analytical target profile (ATP) Bayesian analysis Method transfer Prediction intervals Procedure validation Procedure qualification Ruggedness factors Tolerance intervals 

References

  1. Burdick RK, Borror CM, Montgomery DC (2005) Design and analysis of gauge R&R experiments: making decisions with confidence intervals in random and mixed ANOVA models. ASA-SIAM Series on Statistics and Applied Probability, SIAM, PhiladelphiaCrossRefMATHGoogle Scholar
  2. Chatfield MJ, Borman PJ (2009) Acceptance criteria for method equivalency assessments. Anal Chem 81:9841–9848CrossRefGoogle Scholar
  3. Dolezal KK, Burdick RK, Birch NJ (1998) Analysis of a two-factor R&R study with fixed operators. J Qual Technol 30:163–170Google Scholar
  4. Food and Drug Administration. Center for Drugs Evaluation Research (2011) Process validation: general principles and practices, guidance for industryGoogle Scholar
  5. Food and Drug Administration. Center for Drugs Evaluation Research (2015) Analytical procedures and methods validation for drugs and biologics, guidance for industryGoogle Scholar
  6. Hahn GJ, Meeker WQ (1991) Statistical intervals: a guide for practitioners. Wiley, New YorkCrossRefMATHGoogle Scholar
  7. Hubert Ph, Nguyen-Huu J-J, Boulanger B, Chapuzet E, Chiap P, Cohen N, Compagnon P-A, Dewé W, Feinberg M, Lallier M, Laurentie M, Mercier N, Muzard G, Nivet C, Valat L (2004) Harmonization of strategies for the validation of quantitative analytical procedures: a SFSTP proposal—part I. J Pharm Biomed Anal 36:579–586Google Scholar
  8. Hubert Ph, Nguyen-Huu J-J, Boulanger B, Chapuzet E, Chiap P, Cohen N, Compagnon P-A, Dewé W, Feinberg M, Lallier M, Laurentie M, Mercier N, Muzard G, Nivet C, Valat L, Rozet E (2007a) Harmonization of strategies for the validation of quantitative analytical procedures: a SFSTP proposal—part II. J Pharm Biomed Anal 45:70–81Google Scholar
  9. Hubert Ph, Nguyen-Huu J-J, Boulanger B, Chapuzet E, Cohen N, Compagnon P-A, Dewé W, Feinberg M, Laurentie M, Mercier N, Muzard G, Valat L, Rozet E (2007b) Harmonization of strategies for the validation of quantitative analytical procedures: a SFSTP proposal—part III. J Pharm Biomed Anal 45:82–96Google Scholar
  10. International Conference on Harmonization (2005) Q2 (R1) Validation of analytical procedures: text and methodologyGoogle Scholar
  11. International Conference on Harmonization (2009) Q8 (R2) Pharmaceutical developmentGoogle Scholar
  12. Krishnamoorthy K, Mathew T (2009) Statistical tolerance regions. Wiley, HobokenCrossRefMATHGoogle Scholar
  13. Martin GP, Barnett KL, Burgess C, Curry PD, Ermer J, Gratzl GS, Hammond JP, Herrmann J, Kovacs E, LeBlond DJ, LoBrutto R, McCasland-Keller AK, McGregor PL, Nethercote P, Templeton AC, Thomas DP, Weitzel J (2013) Stimuli to the revision process: lifecycle management of analytical procedures: method development, procedure performance qualification, and procedure performance verification. Pharm Forum 39(5). http://www.usp.org/uspnf/notices/stimuli-article-lifecyclemanagement-analytical-proceduresposted-comment. Accessed 11 Mar 2014
  14. Ntzoufras I (2009) Bayesian modeling in WinBUGS. Wiley, New YorkCrossRefMATHGoogle Scholar
  15. Rugaiganisa A (2016) Comparative analytical method transfer. Presentation at the 2016 ASA Biopharmaceutical Section Regulatory-Industry Statistics Workshop, SeptemberGoogle Scholar
  16. Schwenke JR, O’Connor DK (2008) Design and analysis of analytical method transfer studies. J Biopharm Stat 18:1013–1033MathSciNetCrossRefGoogle Scholar
  17. Spiegelhalter D, Thomas A, Best N, Gilks W (1996) BUGS 0.5 Examples Volume 1(version i). Accessed 21 April 2014. http://www.mrc-bsu.cam.ac.uk/bugs/
  18. USP Statistics Expert Team (2016) In-process revision: <1210> Statistical tools for procedure validation. Pharm Forum 42(5). http://www.usppf.com/pf/pub/index.html
  19. USP 39-NF 34 (2016) General Chapter <1010> analytical data—interpretation and treatment. US Pharmacopeial Convention, RockvilleGoogle Scholar
  20. USP 39-NF 34 (2016) General Chapter <1030> biological assay chapters—overview and glossary. US Pharmacopeial Convention, RockvilleGoogle Scholar
  21. USP 39-NF 34 (2016) General Chapter <1032> design and development of biological assays. US Pharmacopeial Convention, RockvilleGoogle Scholar
  22. USP 39-NF 34 (2016) General Chapter <1033> biological assay validation. US Pharmacopeial Convention, RockvilleGoogle Scholar
  23. USP 39-NF 34 (2016) General Chapter <1223> validation of alternative microbiological methods. US Pharmacopeial Convention, RockvilleGoogle Scholar
  24. USP 39-NF 34 (2016) General Chapter <1224> transfer of analytical procedures. US Pharmacopeial Convention, RockvilleGoogle Scholar
  25. USP 39-NF 34 (2016) General Chapter <1225> validation of compendial procedures. US Pharmacopeial Convention, RockvilleGoogle Scholar
  26. Weitzel MLJ (2012) The estimation and use of measurement uncertainty for a drug substance test procedure validated according to USP<1225> Accred Qual Assur 17:139–146CrossRefGoogle Scholar
  27. Wolfinger RD (1998) Tolerance intervals for variance component models using Bayesian simulation. J Qual Technol 30:18–32Google Scholar
  28. Yang H, Zhang J (2015) Validation based on total error: a generalized pivotal quantity approach to analytical method. PDA J Pharm Sci Technol 69:725–735CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Richard K. Burdick
    • 1
  • David J. LeBlond
    • 2
  • Lori B. Pfahler
    • 3
  • Jorge Quiroz
    • 4
  • Leslie Sidor
    • 5
  • Kimberly Vukovinsky
    • 6
  • Lanju Zhang
    • 7
  1. 1.Elion LabsLouisvilleUSA
  2. 2.CMC StatisticsWadsworthUSA
  3. 3.Merck & Co., Inc.TelfordUSA
  4. 4.Merck & Co., Inc.KenilworthUSA
  5. 5.BiogenCambridgeUSA
  6. 6.PfizerOld SaybrookUSA
  7. 7.Nonclinical Statistics, Abbvie Inc.North ChicagoUSA

Personalised recommendations