Skip to main content

Effects of a 3D Virtual Reality Neurofeedback Scenario on User Experience and Performance in Stroke Patients

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10056))

Abstract

Learning to control one’s own brain activity using neurofeedback can cause cognitive and behavioral improvements in healthy individuals and neurological patients. However, little is known about the impact of feedback design. Therefore, we investigated the effects of traditional two-dimensional and three-dimensional virtual reality based feedback modules on training performance and user experience in stroke patients. Neurofeedback performance was comparable between conditions. Interest, perceived feeling of control, and motivation were higher in patients using the virtual reality application compared to the two-dimensional feedback condition. In contrary, patients who performed the virtual reality training showed higher values in incompetence fear and lower values in mastery confidence compared to the traditional training group. These results indicate that neurofeedback can be improved with the implementation of virtual reality scenarios, especially with regard to patients’ interest and motivation. However, stroke patients might be more skeptical concerning virtual reality technique and less self-confident in using it.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gruzelier, J.H.: EEG-neurofeedback for optimising performance. I: a review of cognitive and affective outcome in healthy participants. Neurosci. Biobehav. Rev. 44, 124–141 (2014)

    Article  Google Scholar 

  2. Hofer, D., Kober, S.E., Reichert, J., Krenn, M., Farveleder, K., Grieshofer, P., Neuper, C., Wood, G.: Spezifische Effekte von EEG basiertem Neurofeedbacktraining auf kognitive Leistungen nach einem Schlaganfall. Ein nutzvolles Werkzeug für die Rehabilitation? Lernen und Lernstörungen 3, 1–19 (2014)

    Google Scholar 

  3. Kober, S.E., Schweiger, D., Witte, M., Reichert, J.L., Grieshofer, P., Neuper, C., Wood, G.: Specific effects of EEG based neurofeedback training on memory functions in post-stroke victims. J. Neuroeng. Rehabil. 12, 107 (2015)

    Article  Google Scholar 

  4. Reichert, J.L., Kober, S.E., Schweiger, D., Grieshofer, P., Neuper, C., Wood, G.: shutting down sensorimotor interferences after stroke. a proof-of-principle SMR neurofeedback study. Front. Hum. Neurosci. 10, 110 (2016)

    Article  Google Scholar 

  5. Cho, B.-H., Kim, S., Shin, D.I., Lee, J.H., Lee, S.M., Kim, I.Y., Kim, S.I.: Neurofeedback training with virtual reality for inattention and impulsiveness. Cyberpsychol. Behav. 7(5), 519–526 (2004). The Impact of the Internet, Multimedia and Virtual Reality on Behavior and Society

    Article  Google Scholar 

  6. Arns, M., de Ridder, S., Strehl, U., Breteler, M., Coenen, T.: Efficacy of neurofeedback treatment in ADHD: the effects on inattention, impulsivity and hyperactivity: a meta-analysis. Clin. EEG Neurosci. 40(3), 180–189 (2009)

    Article  Google Scholar 

  7. Tan, G., Thornby, J., Hammond, D.C., Strehl, U., Canady, B., Arnemann, K., Kaiser, D.A.: Meta-analysis of EEG biofeedback in treating epilepsy. Clin. EEG Neurosci. 40(3), 173–179 (2009)

    Article  Google Scholar 

  8. Strehl, U. (ed.): Neurofeedback Theoretische Grundlagen - Praktisches Vorgehen - Wissenschaftliche Evidenz. Kohlhammer, Stuttgart (2013)

    Google Scholar 

  9. Ninaus, M., Kober, S., Witte, M., Koschutnig, K., Stangl, M., Neuper, C., Wood, G.: Neural substrates of cognitive control under the belief of getting neurofeedback training. Front. Hum. Neurosci. 7(914), 1–10 (2013)

    Google Scholar 

  10. Ninaus, M., Kober, S., Witte, M., Koschutnig, K., Neuper, C., Wood, G.: Brain volumetry and self-regulation of brain activity relevant for neurofeedback. Biol. Psychol. 110, 126–133 (2015)

    Article  Google Scholar 

  11. Wood, G., Kober, S.E., Witte, M., Neuper, C.: On the need to better specify the concept of “control” in brain-computer-interfaces/neurofeedback research. Front. Syst. Neurosci. 8, 171 (2014)

    Article  Google Scholar 

  12. Emmert, K., Kopel, R., Sulzer, J., Brühl, A.B., Berman, B.D., Linden, D.E., Horovitz, S.G., Breimhorst, M., Caria, A., Frank, S., Johnston, S., Long, Z., Paret, C., Robineau, F., Veit, R., Bartsch, A., Beckmann, C.F., van de Ville, D., Haller, S.: Meta-analysis of real-time fMRI neurofeedback studies using individual participant data: How is brain regulation mediated? NeuroImage 124, 806–812 (2016)

    Article  Google Scholar 

  13. Gaume, A., Vialatte, A., Mora-Sánchez, A., Ramdani, C., Vialatte, F.B.: A psychoengineering paradigm for the neurocognitive mechanisms of biofeedback and neurofeedback. Neurosci. Biobehav. Rev. 68, 891–910 (2016)

    Article  Google Scholar 

  14. Yan, N., Wang, J., Liu, M., Zong, L., Jiao, Y., Yue, J., Lv, Y., Yang, Q., Lan, H., Liu, Z.: Designing a brain-computer interface device for neurofeedback using virtual environments. J. Med. Biol. Eng. 28(3), 167–172 (2008)

    Google Scholar 

  15. Kleih, S., Nijboer, F., Halder, S., Kübler, A.: Motivation modulates the P300 amplitude during brain–computer interface use. Clin. Neurophysiol. 121(7), 1023–1031 (2010)

    Article  Google Scholar 

  16. Harris, K., Reid, D.: The influence of virtual reality play on children’s motivation. Can. J. Occup. Ther. 72(1), 21–29 (2005)

    Article  Google Scholar 

  17. Benedetti, F., Catenacci Volpi, N., Parisi, L., Sartori, G.: Attention training with an easy–to–use brain computer interface. In: Shumaker, R., Lackey, S. (eds.) VAMR 2014. LNCS, vol. 8526, pp. 236–247. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07464-1_22

    Google Scholar 

  18. Aart, J. v., Klaver, E., Bartneck, C., Feijs, L., Peters, P.: EEG headset for neurofeedback therapy - enabling easy use in the home environment. In: Proceedings of the Biosignals - International Conference on Bio-inspired Signals and Systems, Funchal, pp. 23–30 (2008)

    Google Scholar 

  19. Lécuyer, A., Lotte, F., Reilly, R.B., Leeb, R., Hirose, M., Slater, M.: Brain-computer interfaces, virtual reality, and videogames. Computer 41(10), 66–72 (2008)

    Article  Google Scholar 

  20. Ron-Angevin, R., Daz Estrella, A., Reyes-Lecuona, A.: Development of a brain-computer interface (BCI) based on virtual reality to improve training techniques. In: Applied Technologies in Medicine and Neuroscience, pp. 13–20 (2005)

    Google Scholar 

  21. Leeb, R., Lee, F., Keinrath, C., Scherer, R., Bischof, H., Pfurtscheller, G.: Brain-computer communication: motivation, aim, and impact of exploring a virtual apartment. IEEE Trans. Neural Syst. Rehabil. Eng. 15(4), 473–482 (2007). A Publication of the IEEE Engineering in Medicine and Biology Society

    Article  Google Scholar 

  22. Friedman, D., Leeb, R., Guger, C., Steed, A., Pfurtscheller, G., Slater, M.: Navigating virtual reality by thought: what is it like? presence Teleoper. Virtual Environ. 16(1), 100–110 (2007)

    Article  Google Scholar 

  23. Gruzelier, J., Inoue, A., Smart, R., Steed, A., Steffert, T.: Acting performance and flow state enhanced with sensory-motor rhythm neurofeedback comparing ecologically valid immersive VR and training screen scenarios. Neurosci. Lett. 480(2), 112–116 (2010)

    Article  Google Scholar 

  24. Mercier-Ganady, J., Lotte, F., Loup-Escande, E., Marchal, M., Lecuyer, A.: The Mind-Mirror: see your brain in action in your head using EEG and augmented reality. In: 2014 IEEE Virtual Reality (VR), Minneapolis, MN, USA, pp. 33–38 (2014)

    Google Scholar 

  25. Bayliss, J.D.: Use of the evoked potential P3 component for control in a virtual apartment. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 113–116 (2003). A Publication of the IEEE Engineering in Medicine and Biology Society

    Article  MathSciNet  Google Scholar 

  26. Rose, F.D., Brooks, B.M., Rizzo, A.A.: Virtual reality in brain damage rehabilitation: review. Cyberpsychol. Behav. 8(3), 241–262 (2005). The Impact of the Internet, Multimedia and Virtual Reality on Behavior and Society

    Article  Google Scholar 

  27. Marzbani, H., Marateb, H.R., Mansourian, M.: Neurofeedback: a comprehensive review on system design, methodology and clinical applications. Basic Clin. Neurosci. 7(2), 143–158 (2016)

    Google Scholar 

  28. Burdea, G.: Virtual rehabilitation: benefits and challenges. Methods Inf. Med. 42(5), 519–523 (2003)

    Google Scholar 

  29. Morganti, F.: Virtual interaction in cognitive neuropsychology. Stud. Health Technol. Inform. 99, 55–70 (2004)

    Google Scholar 

  30. Brooks, J.O., Goodenough, R.R., Crisler, M.C., Klein, N.D., Alley, R.L., Koon, B.L., Logan Jr., W.C., Ogle, J.H., Tyrrell, R.A., Wills, R.F.: Simulator sickness during driving simulation studies. Accid. Anal. Prev. 42(3), 788–796 (2010)

    Article  Google Scholar 

  31. Cameirão, M., Bermúdezi Badia, S., Zimmerli, L., Oller, E.D., Verschure, P.: A virtual reality system for motor and cognitive neurorehabilitation. Chall. Assist. Technol. 20, 393–397 (2007)

    Google Scholar 

  32. Rizzolatti, G., Craighero, L.: The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192 (2004). doi:10.1146/annurev.neuro.27.070203.144230

    Article  Google Scholar 

  33. Mulder, T.: Motor imagery and action observation: cognitive tools for rehabilitation. J. Neural Transm. 114(10), 1265–1278 (2007)

    Article  Google Scholar 

  34. Sollfrank, T., Hart, D., Goodsell, R., Foster, J., Tan, T.: 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery. Front. Hum. Neurosci. 9, 463 (2015)

    Article  Google Scholar 

  35. Hwang, H.-J., Kwon, K., Im, C.-H.: Neurofeedback-based motor imagery training for brain–computer interface (BCI). J. Neurosci. Methods 179(1), 150–156 (2009)

    Article  Google Scholar 

  36. Arrouet, C., Congedo, M., Marvie, J.E., Lamarche, F., Lécuyer, A., Arnaldi, B.: Open-ViBE: a 3D platform for real-time neuroscience. J. Neurother. 9(1), 3–25 (2005)

    Article  Google Scholar 

  37. Kessler, J., Markowitsch, H.J., Denzler, P.: Mini Mental Status Examination MMSE. German Version. Beltz, Weinheim (1990)

    Google Scholar 

  38. Klimesch, W.: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Brain Res. Rev. 29(2–3), 169–195 (1999)

    Article  Google Scholar 

  39. Bounias, M., Laibow, R.E., Bonaly, A., Stubblebine, A.N.: EEG-neurobiofeedback treatment of patients with brain injury: part 1: typological classification of clinical syndromes. J. Neurother. 5(4), 23–44 (2002)

    Article  Google Scholar 

  40. Rheinberg, F., Vollmeyer, R., Burns, B.D.: FAM: Ein Fragebogen zur Erfassung aktuller Motivation in Lern- und Leistungssituationen. Diagnostica 47(2), 57–66 (2001)

    Article  Google Scholar 

  41. Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993)

    Article  Google Scholar 

  42. Crawford, J.R., Garthwaite, P.H.: Statistical methods for single-case studies in neuropsychology: comparing the slope of a patient’s regression line with those of a control sample. Cortex 40(3), 533–548 (2004). A Journal Devoted to the Study of the Nervous System and Behavior

    Article  Google Scholar 

  43. Crawford, J., Garthwaite, P.H.: Investigation of the single case in neuropsychology: confidence limits on the abnormality of test scores and test score differences. Neuropsychologia 40, 1196–1208 (2002)

    Article  Google Scholar 

  44. Kober, S.E., Witte, M., Stangl, M., Valjamae, A., Neuper, C., Wood, G.: Shutting down sensorimotor interference unblocks the networks for stimulus processing: an SMR neurofeedback training study. Clin. Neurophysiol. 126(1), 82–95 (2015)

    Article  Google Scholar 

  45. Wagner, N., Hassanein, K., Head, M.: Computer use by older adults: a multi-disciplinary review. Comput. Hum. Behav. 26(5), 870–882 (2010). Advancing Educational Research on Computer-supported Collaborative Learning (CSCL) through the use of gStudy CSCL Tools

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the European STREP Program – Collaborative Project no. FP7-287320 – CONTRAST and by BioTechMed-Graz, Austria. Possible inaccuracies of information are under the responsibility of the project team. The text reflects solely the views of its authors. The European Commission is not liable for any use that may be made of the information contained therein. The authors are grateful to T-Systems ITC Iberia for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Erika Kober .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Kober, S.E., Reichert, J.L., Schweiger, D., Neuper, C., Wood, G. (2016). Effects of a 3D Virtual Reality Neurofeedback Scenario on User Experience and Performance in Stroke Patients. In: Bottino, R., Jeuring, J., Veltkamp, R. (eds) Games and Learning Alliance. GALA 2016. Lecture Notes in Computer Science(), vol 10056. Springer, Cham. https://doi.org/10.1007/978-3-319-50182-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50182-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50181-9

  • Online ISBN: 978-3-319-50182-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics