Skip to main content

Role of σ1 Receptors in Learning and Memory and Alzheimer’s Disease-Type Dementia

  • Chapter
  • First Online:
Book cover Sigma Receptors: Their Role in Disease and as Therapeutic Targets

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 964))

Abstract

The present chapter will review the role of σ1 receptor in learning and memory and neuroprotection , against Alzheimer’s type dementia. σ1 Receptor agonists have been tested in a variety of pharmacological and pathological models of learning impairments in rodents these last past 20 years. Their anti-amnesic effects have been explained by the wide-range modulatory role of σ1 receptors on Ca2+ mobilizations, neurotransmitter responses, and particularly glutamate and acetylcholine systems, and neurotrophic factors. Recent observations from genetic and pharmacological studies have shown that σ1 receptor can also be targeted in neurodegenerative diseases, and particularly Alzheimer’s disease . Several compounds, acting partly through the σ1 receptor, have showed effective neuroprotection in transgenic mouse models of Alzheimer’s disease . We will review the data and discuss the possible mechanisms of action, particularly focusing on oxidative stress and mitochondrial integrity, trophic factors and a novel hypothesis suggesting a functional interaction between the σ1 receptor and α7 nicotinic acetylcholine receptor. Finally, we will discuss the pharmacological peculiarities of non-selective σ1 receptor ligands, now developed as neuroprotectants in Alzheimer’s disease , and positive modulators, recently described and that showed efficacy against learning and memory deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survival. Cell 131:596–610

    Article  CAS  PubMed  Google Scholar 

  2. Maurice T, Su TP (2009) The pharmacology of sigma-1 receptors. Pharmacol Ther 124:195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rizzuto R, Duchen MR, Pozzan T (2004) Flirting in little space: the ER/mitochondria Ca2+ liaison. Sci STKE 2004(215):re1

    PubMed  Google Scholar 

  4. Walter L, Hajnoczky G (2005) Mitochondria and endoplasmic reticulum: the lethal interorganelle cross-talk. J Bioenerg Biomembr 37:191–206

    Article  CAS  PubMed  Google Scholar 

  5. Shioda N, Ishikawa K, Tagashira H, Ishizuka T, Yawo H, Fukunaga K (2012) Expression of a truncated form of the endoplasmic reticulum chaperone protein, σ1 receptor, promotes mitochondrial energy depletion and apoptosis. J Biol Chem 287:23318–23331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kourrich S, Su TP, Fujimoto M, Bonci A (2012) The sigma-1 receptor: roles in neuronal plasticity and disease. Trends Neurosci 35:762–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Soriani O, Foll FL, Roman F, Monnet FP, Vaudry H, Cazin L (1999) A-Current down-modulated by sigma receptor in frog pituitary melanotrope cells through a G protein-dependent pathway. J Pharmacol Exp Ther 289:321–328

    CAS  PubMed  Google Scholar 

  8. Zhang H, Cuevas J (2002) Sigma receptors inhibit high-voltage-activated calcium channels in rat sympathetic and parasympathetic neurons. J Neurophysiol 87:2867–2879

    CAS  PubMed  Google Scholar 

  9. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hille B (1984) Ionic channels of excitables membranes. Sinauer Associates Inc., Sunderland

    Google Scholar 

  11. Monnet FP, Debonnel G, Junien JL, De Montigny C (1990) N-methyl-d-aspartate-induced neuronal activation is selectively modulated by sigma receptors. Eur J Pharmacol 179:441–445

    Article  CAS  PubMed  Google Scholar 

  12. Cao J, Viholainen JI, Dart C, Warwick HK, Leyland ML, Courtney MJ (2005) The PSD95- nNOS interface: a target for inhibition of excitotoxic p38 stress-activated protein kinase activation and cell death. J Cell Biol 168:117–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang ZJ, Carter EL, Torbey MT, Martin LJ, Koehler RC (2010) Sigma receptor ligand 4- phenyl-1-(4-phenylbutyl)-piperidine modulates neuronal nitric oxide synthase/postsynaptic density-95 coupling mechanisms and protects against neonatal ischemic degeneration of striatal neurons. Exp Neurol 221:166–174

    Article  CAS  PubMed  Google Scholar 

  14. Meunier J, Hayashi T (2009) Sigma-1 receptors regulate Bcl-2 expression by reactive oxygen species-dependent transcriptional regulation of nuclear factor κB. J Pharmacol Exp Ther 332:388–397

    Article  PubMed  CAS  Google Scholar 

  15. Tsai SY, Hayashi T, Harvey BK, Wang Y, Wu WW, Shen RF, Zhang Y, Becker KG, Hoffer BJ, Su TP (2009) Sigma-1 receptors regulate hippocampal dendritic spine formation via a free radical-sensitive mechanism involving Rac1xGTP pathway. Proc Natl Acad Sci U S A 106:166–174

    Google Scholar 

  16. Natsvlishvili N, Goguadze N, Zhuravliova E, Mikeladze D (2015) Sigma-1 receptor directly interacts with Rac1-GTPase in the brain mitochondria. BMC Biochem 16:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chevallier N, Keller E, Maurice T (2011) Behavioral phenotyping of mice knockout for the sigma-1 (σ1) chaperone protein revealed gender-related anxiety, depressive-like and memory alterations. J Psychopharmacol 25:960–975

    Article  CAS  PubMed  Google Scholar 

  18. Earley B, Burke M, Leonard BE, Gouret CJ, Junien JL (1991) Evidence for an anti-amnesic effect of JO 1784 in the rat: a potent and selective ligand for the sigma receptor. Brain Res 546:282–286

    Article  CAS  PubMed  Google Scholar 

  19. Maurice T, Hiramatsu M, Itoh J, Kameyama T, Hasegawa T, Nabeshima T (1994) Behavioral evidence for a modulating role of sigma ligands in memory processes. I. Attenuation of dizocilpine (MK-801)-induced amnesia. Brain Res 647:44–56

    Article  CAS  PubMed  Google Scholar 

  20. Matsuno K, Senda T, Matsunaga K, Mita S (1994) Ameliorating effects of sigma receptor ligands on the impairment of passive avoidance tasks in mice: involvement in the central acetylcholinergic system. Eur J Pharmacol 261:43–51

    Article  CAS  PubMed  Google Scholar 

  21. Matsuno K, Senda T, Kobayashi T, Mita S (1995) Involvement of sigma1 receptor in (+)-N-allylnormetazocine-stimulated hippocampal cholinergic functions in rats. Brain Res 690:200–206

    Article  CAS  PubMed  Google Scholar 

  22. Matsuno K, Senda T, Kobayashi T, Okamoto K, Nakata K, Mita S (1997) SA4503, a novel cognitive enhancer, with sigma1 receptor agonistic properties. Behav Brain Res 83:221–224

    Article  CAS  PubMed  Google Scholar 

  23. Senda T, Matsuno K, Okamoto K, Kobayashi T, Nakata K, Mita S (1996) Ameliorating effect of SA4503, a novel sigma1 receptor agonist, on memory impairments induced by cholinergic dysfunction in rats. Eur J Pharmacol 315:1–10

    Article  CAS  PubMed  Google Scholar 

  24. Senda T, Matsuno K, Kobayashi T, Mita S (1997) Reduction of the scopolamine-induced impairment of passive-avoidance performance by sigma receptor agonist in mice. Physiol Behav 61:257–264

    Article  CAS  PubMed  Google Scholar 

  25. Urani A, Privat A, Maurice T (1998) The modulation by neurosteroids of the scopolamine-induced learning impairment in mice involves an interaction with sigma11) receptors. Brain Res 799:64–77

    Article  CAS  PubMed  Google Scholar 

  26. Wang HH, Chien JW, Chou YC, Liao JF, Chen CF (2003) Anti-amnesic effect of dimemorfan in mice. Br J Pharmacol 138:941–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hiramatsu M, Hoshino T (2005) Improvement of memory impairment by (+)- and (−)-pentazocine via sigma, but not kappa opioid receptors. Brain Res 1057:72–80

    Article  CAS  PubMed  Google Scholar 

  28. Hiramatsu M, Hoshino T, Kanematsu K (2005) Pharmacological characterization of the ameliorating effect on short-term memory impairment and antinociceptive effect of KT-90 in mice. Behav Brain Res 160:374–381

    Article  CAS  PubMed  Google Scholar 

  29. Hiramatsu M, Mizuno N, Kanematsu K (2006) Pharmacological characterization of the ameliorating effect on learning and memory impairment and antinociceptive effect of KT-95 in mice. Behav Brain Res 167:219–225

    Article  CAS  PubMed  Google Scholar 

  30. Zvejniece L, Vavers E, Svalbe B, Vilskersts R, Domracheva I, Vorona M, Veinberg G, Misane I, Stonans I, Kalvinsh I, Dambrova M (2014) The cognition-enhancing activity of E1R, a novel positive allosteric modulator of sigma-1 receptors. Br J Pharmacol 171:761–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Malik M, Rangel-Barajas C, Sumien N, Su C, Singh M, Chen Z, Huang RQ, Meunier J, Maurice T, Mach RH, Luedtke RR (2015) The effects of sigma (σ1) receptor-selective ligands on muscarinic receptor antagonist-induced cognitive deficits in mice. Br J Pharmacol 172:2519–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maurice T, Su TP, Parish DW, Nabeshima T, Privat A (1994) PRE-084, a sigma selective PCP derivative, attenuates MK-801-induced impairment of learning in mice. Pharmacol Biochem Behav 49:859–869

    Article  CAS  PubMed  Google Scholar 

  33. Ohno M, Watanabe S (1995) Intrahippocampal administration of (+)-SKF 10,047, a sigma ligand, reverses MK-801-induced impairment of working memory in rats. Brain Res 684:237–242

    Article  CAS  PubMed  Google Scholar 

  34. Zou LB, Yamada K, Nabeshima T (1998) Sigma receptor ligands (+)-SKF10,047 and SA4503 improve dizocilpine-induced spatial memory deficits in rats. Eur J Pharmacol 355:1–10

    Article  CAS  PubMed  Google Scholar 

  35. Zou LB, Yamada K, Sasa M, Nakata Y, Nabeshima T (2000) Effects of sigma1 receptor agonist SA4503 and neuroactive steroids on performance in a radial arm maze task in rats. Neuropharmacology 39:1617–1627

    Article  CAS  PubMed  Google Scholar 

  36. Maurice T, Lockhart BP (1997) Neuroprotective and anti-amnesic potentials of sigma (σ) receptor ligands. Prog Neuro-Psychopharmacol Biol Psychiatry 21:69–102

    Article  CAS  Google Scholar 

  37. Maurice T, Urani A, Phan VL, Romieu P The interaction between neuroactive steroids and the σ1 receptor function: behavioral consequences and therapeutic opportunities. Brain Res Rev 37:116–132

    Google Scholar 

  38. Monnet FP, Maurice T (2006) The sigma1 protein as a target for the non-genomic effects of neuro(active)steroids: molecular, physiological, and behavioral aspects. J Pharmacol Sci 100:93–118

    Article  CAS  PubMed  Google Scholar 

  39. van Waarde A, Ramakrishnan NK, Rybczynska AA, Elsinga PH, Ishiwata K, Nijholt IM, Luiten PG, Dierckx RA (2011) The cholinergic system, sigma-1 receptors and cognition. Behav Brain Res 221:543–554

    Article  PubMed  CAS  Google Scholar 

  40. Matsuno K, Matsunaga K, Senda T, Mita S (1993) Increase in extracellular acetylcholine level by sigma ligands in rat frontal cortex. J Pharmacol Exp Ther 265:851–859

    CAS  PubMed  Google Scholar 

  41. Maurice T, Su TP, Parish DW, Privat A (1995) Prevention of nimodipine-induced impairment of learning by the selective sigma ligand PRE-084. J Neural Transm Gen Sect 102:1–18

    Article  CAS  PubMed  Google Scholar 

  42. Maurice T, Su TP, Privat A (1998) Sigma11) receptor agonists and neurosteroids attenuate β25-35-amyloid peptide-induced amnesia in mice through a common mechanism. Neuroscience 83:413–428

    Article  CAS  PubMed  Google Scholar 

  43. Mamiya T, Noda Y, Noda A, Hiramatsu M, Karasawa K, Kameyama T, Furukawa S, Yamada K, Nabeshima T (2000) Effects of sigma receptor agonists on the impairment of spontaneous alternation behavior and decrease of cyclic GMP level induced by nitric oxide synthase inhibitors in mice. Neuropharmacology 39:2391–2398

    Article  CAS  PubMed  Google Scholar 

  44. Meunier J, Ieni J, Maurice T (2006) The anti-amnesic and neuroprotective effects of donepezil against amyloid β25-35 peptide-induced toxicity in mice involve an interaction with the sigma1 receptor. Br J Pharmacol 149:998–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hashimoto K, Fujita Y, Iyo M (2007) Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of fluvoxamine: role of sigma-1 receptors. Neuropsychopharmacology 32:514–521

    Article  CAS  PubMed  Google Scholar 

  46. Kunitachi S, Fujita Y, Ishima T, Kohno M, Horio M, Tanibuchi Y, Shirayama Y, Iyo M, Hashimoto K (2009) Phencyclidine-induced cognitive deficits in mice are ameliorated by subsequent subchronic administration of donepezil: role of sigma-1 receptors. Brain Res 1279:189–196

    Article  CAS  PubMed  Google Scholar 

  47. O’Connell AW, Earley B, Leonard BE (1996) The sigma ligand JO 1784 prevents trimethyltin-induced behavioural and sigma-receptor dysfunction in the rat. Pharmacol Toxicol 78:296–302

    Article  PubMed  Google Scholar 

  48. Senda T, Matsuno K, Kobayashi T, Nakazawa M, Nakata K, Mita S (1998) Ameliorative effect of SA4503, a novel cognitive enhancer, on the basal forebrain lesion-induced impairment of the spatial learning performance in rats. Pharmacol Biochem Behav 59:129–134

    Article  CAS  PubMed  Google Scholar 

  49. Maurice T, Phan VL, Noda Y, Yamada K, Privat A, Nabeshima T (1999) The attenuation of learning impairments induced after exposure to CO or trimethyltin in mice by sigma (σ) receptor ligands involves both σ1 and σ2 sites. Br J Pharmacol 127:335–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maurice T, Phan V, Sandillon F, Urani A (2000) Differential effect of dehydroepiandrosterone and its steroid precursor pregnenolone against the behavioural deficits in CO-exposed mice. Eur J Pharmacol 390:145–155

    Article  CAS  PubMed  Google Scholar 

  51. Ivković M, Damjanović A, Jasović-Gasić M, Paunović VR (2004) The effects of fluoxetine on cognitive functions in animal model of Alzheimer’s disease. Psychiatr Danub 16:15–20

    PubMed  Google Scholar 

  52. Antonini V, Prezzavento O, Coradazzi M, Marrazzo A, Ronsisvalle S, Arena E, Leanza G (2009) Anti-amnesic properties of (±)-PPCC, a novel sigma receptor ligand, on cognitive dysfunction induced by selective cholinergic lesion in rats. J Neurochem 109:744–754

    Article  CAS  PubMed  Google Scholar 

  53. Maurice T, Hiramatsu M, Kameyama T, Hasegawa T, Nabeshima T (1994) Behavioral evidence for a modulating role of sigma ligands in memory processes. II. Reversion of carbon monoxide-induced amnesia. Brain Res 647:57–64

    Article  CAS  PubMed  Google Scholar 

  54. Meunier J, Gué M, Récasens M, Maurice T (2004) Attenuation by a sigma11) receptor agonist of the learning and memory deficits induced by a prenatal restraint stress in juvenile rats. Br J Pharmacol 142:689–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Meunier J, Maurice T (2004) Beneficial effects of the sigma1 receptor agonists igmesine and dehydroepiandrosterone against learning impairments in rats prenatally exposed to cocaine. Neurotoxicol Teratol 26:783–797

    Article  CAS  PubMed  Google Scholar 

  56. Maurice T, Roman FJ, Su TP, Privat A (1996) Beneficial effects of sigma agonists on the age-related learning impairment in the senescence-accelerated mouse (SAM). Brain Res 733:219–230

    Article  CAS  PubMed  Google Scholar 

  57. Maurice T (2001) Beneficial effect of the sigma1 receptor agonist PRE-084 against the spatial learning deficits in aged rats. Eur J Pharmacol 431:223–227

    Article  CAS  PubMed  Google Scholar 

  58. Maurice T (2007) Coginitive effects of s ligands. In: Matsumoto RR, Bowen WD, Su TP (eds) Sigma receptors: chemistry, cell biology and clinical implications. Springer, New York

    Google Scholar 

  59. Alonso G, Phan V, Guillemain I, Saunier M, Legrand A, Anoal M, Maurice T (2000) Immunocytochemical localization of the sigma1 receptor in the adult rat central nervous system. Neuroscience 97:155–170

    Article  CAS  PubMed  Google Scholar 

  60. Majewska MD, Parameswaran S, Vu T, London ED (1989) Divergent ontogeny of sigma and phencyclidine binding sites in the rat brain. Brain Res Dev Brain Res 47:13–18

    Article  CAS  PubMed  Google Scholar 

  61. Phan VL, Urani A, Sandillon F, Privat A, Maurice T (2003) Preserved sigma11) receptor expression and behavioral efficacy in the aged C57BL/6 mouse. Neurobiol Aging 24:865–881

    Article  CAS  PubMed  Google Scholar 

  62. Phan VL, Miyamoto Y, Nabeshima T, Maurice T (2005) Age-related expression of sigma1 receptors and antidepressant efficacy of a selective agonist in the senescence-accelerated (SAM) mouse. J Neurosci Res 79:561–572

    Article  CAS  PubMed  Google Scholar 

  63. Ishiwata K, Kobayashi T, Kawamura K, Matsuno K (2003) Age-related changes of the binding of [3H]SA4503 to sigma1 receptors in the rat brain. Ann Nucl Med 17:73–77

    Article  CAS  PubMed  Google Scholar 

  64. Kawamura K, Kimura Y, Tsukada H, Kobayashi T, Nishiyama S, Kakiuchi T, Ohba H, Harada N, Matsuno K, Ishii K, Ishiwata K (2003) An increase of sigma receptors in the aged monkey brain. Neurobiol Aging 24:745–752

    Article  CAS  PubMed  Google Scholar 

  65. Ishii K, Kimura Y, Kawamura K, Oda K, Sasaki T, Ishiwata K (2002) Mapping of sigma1 receptors by 11C-SA4503-distribution and aging effect in normal human brain. NeuroImage 16:S31

    Google Scholar 

  66. Monnet FP, Debonnel G, de Montigny C (1992) In vivo electrophysiological evidence for a selective modulation of N-methyl-d-aspartate-induced neuronal activation in rat CA3 dorsal hippocampus by sigma ligands. J Pharmacol Exp Ther 261:123–130

    CAS  PubMed  Google Scholar 

  67. Monnet FP, Mahé V, Robel P, Baulieu EE (1995) Neurosteroids, via sigma receptors, modulate the [3H]norepinephrine release evoked by N-methyl-d-aspartate in the rat hippocampus. Proc Natl Acad Sci U S A 92:3774–3778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen L, Dai XN, Sokabe M (2006) Chronic administration of dehydroepiandrosterone sulfate (DHEAS) primes for facilitated induction of long-term potentiation via sigma11) receptor: optical imaging study in rat hippocampal slices. Neuropharmacology 50:380–392

    Article  CAS  PubMed  Google Scholar 

  69. Li Z, Zhou R, Cui S, Xie G, Cai W, Sokabe M, Chen L (2006) Dehydroepiandrosterone sulfate prevents ischemia-induced impairment of long-term potentiation in rat hippocampal CA1 by up-regulating tyrosine phosphorylation of NMDA receptor. Neuropharmacology 51:958–966

    Article  CAS  PubMed  Google Scholar 

  70. Martina M, Turcotte ME, Halman S, Bergeron R (2007) The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus. J Physiol 578:143–157

    Article  CAS  PubMed  Google Scholar 

  71. Pabba M, Wong AY, Ahlskog N, Hristova E, Biscaro D, Nassrallah W, Ngsee JK, Snyder M, Beique JC, Bergeron R (2014) NMDA receptors are upregulated and trafficked to the plasma membrane after sigma-1 receptor activation in the rat hippocampus. J Neurosci 34:11325–11338

    Article  PubMed  CAS  Google Scholar 

  72. Aigner TG (1995) Pharmacology of memory: cholinergic–glutamatergic interactions. Curr Opin Neurobiol 5:155–160

    Article  CAS  PubMed  Google Scholar 

  73. Junien JL, Roman FJ, Brunelle G, Pascaud X (1991) JO1784, a novel sigma ligand, potentiates [3H]acetylcholine release from rat hippocampal slices. Eur J Pharmacol 200:343–345

    Article  CAS  PubMed  Google Scholar 

  74. Horan B, Gifford AN, Matsuno K, Mita S, Ashby CR (2002) Effect of SA4503 on the electrically evoked release of 3H-acetylcholine from striatal and hippocampal rat brain slices. Synapse 46:1–3

    Article  CAS  PubMed  Google Scholar 

  75. Matsuno K, Matsunaga K, Mita S (1992) Increase of extracellular acetylcholine level in rat frontal cortex induced by (+)N-allylnormetazocine as measured by brain microdialysis. Brain Res 575:315–319

    Article  CAS  PubMed  Google Scholar 

  76. Kobayashi T, Matsuno K, Nakata K, Mita S (1996) Enhancement of acetylcholine release by SA4503, a novel sigma 1 receptor agonist, in the rat brain. J Pharmacol Exp Ther 279:106–113

    CAS  PubMed  Google Scholar 

  77. Hayashi T, Maurice T, Su TP (2000) Ca2+ signaling via sigma1-receptors: novel regulatory mechanism affecting intracellular Ca2+ concentration. J Pharmacol Exp Ther 293:788–798

    CAS  PubMed  Google Scholar 

  78. Foskett JK, White C, Cheung KH, Mak DO (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87:593–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Horch HW, Krüttgen A, Portbury SD, Katz LC (1999) Destabilization of cortical dendrites and spines by BDNF. Neuron 23:353–364

    Article  CAS  PubMed  Google Scholar 

  80. Leal G, Afonso PM, Salazar IL, Duarte CB (2015) Regulation of hippocampal synaptic plasticity by BDNF. Brain Res 1621:82–101

    Article  CAS  PubMed  Google Scholar 

  81. Scharfman HE, Chao MV (2013) The entorhinal cortex and neurotrophin signaling in Alzheimer’s disease and other disorders. Cogn Neurosci 4:123–135

    Article  PubMed  Google Scholar 

  82. Ovalle S, Andreu F, Pérez MP, Zamanillo D, Guitart X (2002) Effect of the novel sigma1 receptor ligand and putative atypical antipsychotic E-5842 on BDNF mRNA expression in the rat brain. Neuroreport 13:2345–2348

    Article  CAS  PubMed  Google Scholar 

  83. Kikuchi-Utsumi K, Nakaki T (2008) Chronic treatment with a selective ligand for the sigma-1 receptor chaperone, SA4503, up-regulates BDNF protein levels in the rat hippocampus. Neurosci Lett 440:19–22

    Article  CAS  PubMed  Google Scholar 

  84. Fujimoto M, Hayashi T, Urfer R, Mita S, Su TP (2012) Sigma-1 receptor chaperones regulate the secretion of brain-derived neurotrophic factor. Synapse 66:630–639

    Article  CAS  PubMed  Google Scholar 

  85. Ring RM, Regan CM (2013) Captodiamine, a putative antidepressant, enhances hypothalamic BDNF expression in vivo by synergistic 5-HT2c receptor antagonism and sigma-1 receptor agonism. J Psychopharmacol 27:930–939

    Article  CAS  PubMed  Google Scholar 

  86. Terada K, Izumo N, Suzuki B, Karube Y, Morikawa T, Ishibashi Y, Kameyama T, Chiba K, Sasaki N, Iwata K, Matsuzaki H, Manabe T (2014) Fluvoxamine moderates reduced voluntary activity following chronic dexamethasone nfusion in mice via recovery of BDNF signal cascades. Neurochem Int 69:9–13

    Article  CAS  PubMed  Google Scholar 

  87. Xu Q, Ji XF, Chi TY, Liu P, Jin G, Gu SL, Zou LB (2015) Sigma1 receptor activation regulates brain-derived neurotrophic factor through NR2A-CaMKIV-TORC1 pathway to rescue the impairment of learning and memory induced by brain ischaemia/reperfusion. Psychopharmacology 232:1779–1791

    Article  CAS  PubMed  Google Scholar 

  88. Yagasaki Y, Numakawa T, Kumamaru E, Hayashi T, Su TP, Kunugi H (2006) Chronic antidepressants potentiate via sigma-1 receptors the brain-derivedneurotrophic actor-induced signaling for glutamate release. J Biol Chem 281:12941–12949

    Article  CAS  PubMed  Google Scholar 

  89. Selkoe DJ (2004) Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat Cell Biol 6:1054–1061

    Article  CAS  PubMed  Google Scholar 

  90. Mishina M, Ohyama M, Ishii K, Kitamura S, Kimura Y, Oda K, Kawamura K, Sasaki T, Kobayashi S, Katayama Y, Ishiwata K (2008) Low density of sigma1 receptors in early Alzheimer’s disease. Ann Nucl Med 22:151–156

    Article  CAS  PubMed  Google Scholar 

  91. Fehér Á, Juhász A, László A, Kálmán J Jr, Pákáski M, Kálmán J, Janka Z (2012) Association between a variant of the sigma-1 receptor gene and Alzheimer’s disease. Neurosci Lett 517:136–139

    Article  PubMed  CAS  Google Scholar 

  92. Uchida N, Ujike H, Tanaka Y, Sakai A, Yamamoto M, Fujisawa Y, Kanzaki A, Kuroda S (2005) A variant of the sigma receptor type-1 gene is a protective factor for Alzheimer disease. Am J Geriatr Psychiatry 13:1062–1066

    Article  PubMed  Google Scholar 

  93. Maruszak A, Safranow K, Gacia M, Gabryelewicz T, Słowik A, Styczyńska M, Pepłońska B, Golan MP, Zekanowski C, Barcikowska M (2007) Sigma receptor type 1 gene expression variation in a group of Polish patients with Alzheimer’s disease and mild cognitive impairment. Dement Geriatr Cogn Disord 23:432–438

    Article  CAS  PubMed  Google Scholar 

  94. Huang Y, Zheng L, Halliday G, Dobson-Stone C, Wang Y, Tang HD, Cao L, Deng YL, Wang G, Zhang YM, Wang JH, Hallupp M, Kwok J, Chen SD (2011) Genetic polymorphisms in sigma-1 receptor and apolipoprotein E interact to influence the severity of Alzheimer’s disease. Curr Alzheimer Res 8:765–770

    Article  CAS  PubMed  Google Scholar 

  95. Jansen KL, Faull RL, Storey P, Leslie RA (1993) Loss of sigma binding sites in the CA1 area of the anterior hippocampus in Alzheimer’s disease correlates with CA1 pyramidal cell loss. Brain Res 623:299–302

    Article  CAS  PubMed  Google Scholar 

  96. Villard V, Espallergues J, Keller E, Alkam T, Nitta A, Yamada K, Nabeshima T, Vamvakides A, Maurice T (2009) Anti-amnesic and neuroprotective effects of the aminotetrahydrofuran derivative ANAVEX1-41 against amyloid beta(25-35)-induced toxicity in mice. Neuropsychopharmacology 34:1552–1566

    Article  CAS  PubMed  Google Scholar 

  97. Villard V, Espallergues J, Keller E, Vamvakides A, Maurice T (2011) Anti-amnesic and neuroprotective potentials of the mixed muscarinic receptor/sigma11) ligand ANAVEX2-73, a novel aminotetrahydrofuran derivative. J Psychopharmacol 25:1101–1117

    Article  CAS  PubMed  Google Scholar 

  98. Marrazzo A, Parenti C, Scavo V, Ronsisvalle S, Scoto GM, Ronsisvalle G (2006) In vivo evaluation of (+)-MR200 as a new selective sigma ligand modulating MOP, DOP and KOP supraspinal analgesia. Life Sci 78:2449–2453

    Article  CAS  PubMed  Google Scholar 

  99. Antonini V, Marrazzo A, Kleiner G, Coradazzi M, Ronsisvalle S, Prezzavento O, Ronsisvalle G, Leanza G (2011) Anti-amnesic and neuroprotective actions of the sigma-1 receptor agonist (−)-MR22 in rats with selective cholinergic lesion and amyloid infusion. J Alzheimers Dis 24:569–586

    CAS  PubMed  Google Scholar 

  100. Yang R, Chen L, Wang H, Xu B, Tomimoto H, Chen L (2012) Anti-amnesic effect of neurosteroid PREGS in Aβ25-35-injected mice through σ1 receptor- and α7 nAChR-mediated neuroprotection. Neuropharmacology 63:1042–1050

    Article  CAS  PubMed  Google Scholar 

  101. Lahmy V, Meunier J, Malmström S, Naert G, Givalois L, Kim SH, Villard V, Vamvakides A, Maurice T (2013) Blockade of Tau hyperphosphorylation and Aβ1-42 generation by the aminotetrahydrofuran derivative ANAVEX2-73, a mixed muscarinic and σ1 receptor agonist, in a nontransgenic mouse model of Alzheimer’s disease. Neuropsychopharmacology 38:1706–1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fisher A, Bezprozvanny I, Wu L, Ryskamp DA, Bar-Ner N, Natan N, Brandeis R, Elkon H, Nahum V, Gershonov E, LaFerla FM, Medeiros R (2015) AF710B, a novel M1/σ1 agonist with therapeutic efficacy in animal models of Alzheimer’s disease, vol 16. Neurodegener Dis, pp. 95–110

    Google Scholar 

  103. Maurice T, Villard V, Duhr F, Chevallier N (2010) Amyloid toxicity induced by in vivo injection of Aβ25–35 oligomeric preparations is enhanced after pharmacologic or genetic invalidation of the sigma-1 chaperone protein. Soc Neurosci Abstr Program No. 247.7. San Diego, CA.

    Google Scholar 

  104. Maurice T, Lahmy V, Strehaiano M, Dekeuwer A, Naert G, Desrumeaux C, Villard V, Chevallier N (2015) Genetic invalidation or pharmacological activation of the σ1 chaperone protein modulates toxicity in the transgenic hAPPSwe mouse line. French Soc Neurosci Abstr. Montpellier, France.

    Google Scholar 

  105. Yin J, Sha S, Chen T, Wang C, Hong J, Jie P, Zhou R, Li L, Sokabe M, Chen L (2015) Sigma-1 (σ1) receptor deficiency reduces β-amyloid25-35-induced hippocampal neuronal cell death and cognitive deficits through suppressing phosphorylation of the NMDA receptor NR2B. Neuropharmacology 89:215–224

    Article  CAS  PubMed  Google Scholar 

  106. Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S, Chiba S, Atwood CS, Petersen RB, Smith MA (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60:759–767

    Article  CAS  PubMed  Google Scholar 

  107. Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH (2006) Mitochondria are a direct site of Aβ accumulation in Alzheimer’s disease neurons: Implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15:1437–1449

    Article  CAS  PubMed  Google Scholar 

  108. Leuner K, Hauptmann S, Abdel-Kader R, Scherping I, Keil U, Strosznajder JB, Eckert A, Müller WE (2007) Mitochondrial dysfunction: the first domino in brain aging and Alzheimer’s disease? Antioxid Redox Signal 9:1659–1675

    Article  CAS  PubMed  Google Scholar 

  109. Lahmy V, Long R, Morin D, Villard V, Maurice T (2015) Mitochondrial protection by the mixed muscarinic/σ1 ligand ANAVEX2-73, a tetrahydrofuran derivative, in Aβ25-35 peptide-injected mice, a nontransgenic Alzheimer’s disease model. Front Cell Neurosci 8:463

    Article  PubMed  PubMed Central  Google Scholar 

  110. Paradies G, Ruggiero FM, Petrosillo G, Quagliariello E (1998) Peroxidative damage to cardiac mitochondria: cytochrome oxidase and cardiolipin alterations. FEBS Lett 424:155–158

    Article  CAS  PubMed  Google Scholar 

  111. Bobba A, Amadoro G, Valenti D, Corsetti V, Lassandro R, Atlante A (2013) Mitochondrial respiratory chain Complexes I and IV are impaired by β-amyloid via direct interaction and through Complex I-dependent ROS production, respectively. Mitochondrion 13:298–311

    Article  CAS  PubMed  Google Scholar 

  112. Hansson Petersen CA, Alikhani N, Behbahani H, Wiehager B, PF P, Alafuzoff I, Leinonen V, Ito A, Winblad B, Glaser E, Ankarcrona M (2008) The amyloid β-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci U S A 105:13145–13150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Smilansky A, Dangoor L, Nakdimon I, Ben-Hail D, Mizrachi D, Shoshan-Barmatz V (2015) The Voltage-dependent Anion Channel 1 Mediates Amyloid Toxicity and Represents a Potential Target for Alzheimer Disease Therapy. J Biol Chem 290:30670–30683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Szabadkai G, Bianchi K, Várnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T, Rizzuto R (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175:901–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hefti F, Weiner WJ (1986) Nerve growth factor and Alzheimer’s disease. Ann Neurol 20:275–281

    Article  CAS  PubMed  Google Scholar 

  116. Takebayashi M, Hayashi T, Su TP (2002) Nerve growth factor-induced neurite sprouting in PC12 cells involves sigma-1 receptors: implications for antidepressants. J Pharmacol Exp Ther 303:1227–1237

    Article  CAS  PubMed  Google Scholar 

  117. Nishimura T, Ishima T, Iyo M, Hashimoto K (2008) Potentiation of nerve growth factor-induced neurite outgrowth by fluvoxamine: role of sigma-1 receptors, IP3 receptors and cellular signaling pathways. PLoS One 3:e2558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Ishima T, Nishimura T, Iyo M, Hashimoto K (2008) Potentiation of nerve growth factor-induced neurite outgrowth in PC12 cells by donepezil: role of sigma-1 receptors and IP3 receptors. Prog Neuro-Psychopharmacol Biol Psychiatry 32:1656–1659

    Article  CAS  Google Scholar 

  119. Ishima T, Hashimoto K (2012) Potentiation of nerve growth factor-induced neurite outgrowth in PC12 cells by ifenprodil: the role of sigma-1 and IP3 receptors. PLoS One 7:e37989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rossi D, Pedrali A, Urbano M, Gaggeri R, Serra M, Fernández L, Fernández M, Caballero J, Ronsisvalle S, Prezzavento O, Schepmann D, Wuensch B, Peviani M, Curti D, Azzolina O, Collina S (2011) Identification of a potent and selective σ1 receptor agonist potentiating NGF-induced neurite outgrowth in PC12 cells. Bioorg Med Chem 19:6210–6224

    Article  CAS  PubMed  Google Scholar 

  121. Rossi D, Marra A, Picconi P, Serra M, Catenacci L, Sorrenti M, Laurini E, Fermeglia M, Pricl S, Brambilla S, Almirante N, Peviani M, Curti D, Collina S (2013) Identification of RC-33 as a potent and selective σ1 receptor agonist potentiating NGF-induced neurite outgrowth in PC12 cells. Part 2: g-scale synthesis, physicochemical characterization and in vitro metabolic stability. Bioorg Med Chem 21:2577–2586

    Article  CAS  PubMed  Google Scholar 

  122. Ishima T, Fujita Y, Hashimoto K (2014) Interaction of new antidepressants with sigma-1 receptor chaperones and their potentiation of neurite outgrowth in PC12 cells. Eur J Pharmacol 727:167–173

    Article  CAS  PubMed  Google Scholar 

  123. Chen L, Sokabe M (2005) Presynaptic modulation of synaptic transmission by pregnenolone sulfate as studied by optical recordings. J Neurophysiol 94:4131–4144

    Article  CAS  PubMed  Google Scholar 

  124. Maurice T (2016) Protection by sigma-1 receptor agonists is synergic with donepezil, but not with memantine, in a mouse model of amyloid-induced memory impairments. Behav Brain Res 296:270–278

    Article  CAS  PubMed  Google Scholar 

  125. Geerts H (2012) α7 Nicotinic receptor modulators for cognitive deficits in schizophrenia and Alzheimer’s disease. Expert Opin Investig Drugs 21:59–65

    Article  CAS  PubMed  Google Scholar 

  126. Parri RH, Dineley TK (2010) Nicotinic acetylcholine receptor interaction with beta-amyloid: molecular, cellular, and physiological consequences. Curr Alzheimer Res 7:27–39

    Article  CAS  PubMed  Google Scholar 

  127. Gergalova G, Lykhmus O, Kalashnyk O, Koval L, Chernyshov V, Kryukova E, Tsetlin V, Komisarenko S, Skok M (2012) Mitochondria express α7 nicotinic acetylcholine receptors to regulate Ca2+ accumulation and cytochrome c release: study on isolated mitochondria. PLoS One 7:e31361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Galzi JL, Bertrand S, Corringer PJ, Changeux JP, Bertrand D (1996) Identification of calcium binding sites that regulate potentiation of a neuronal nicotinic acetylcholine receptor. EMBO J 15:5824–5832

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Hayashi T, Su TP (2003) Intracellular dynamics of sigma-1 receptors (σ1 binding sites) in NG108-15 cells. J Pharmacol Exp Ther 306:726–733

    Article  CAS  PubMed  Google Scholar 

  130. Navarro G, Moreno E, Aymerich M, Marcellino D, McCormick PJ, Mallol J, Cortés A, Casadó V, Canela EI, Ortiz J, Fuxe K, Lluís C, Ferré S, Franco R (2010) Direct involvement of sigma-1 receptors in the dopamine D1 receptor-mediated effects of cocaine. Proc Natl Acad Sci U S A 107:18676–18681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Navarro G, Moreno E, Bonaventura J, Brugarolas M, Farré D, Aguinaga D, Mallol J, Cortés A, Casadó V, Lluís C, Ferre S, Franco R, Canela E, McCormick PJ (2013) Cocaine inhibits dopamine D2 receptor signaling via sigma-1-D2 receptor heteromers. PLoS One 8:e61245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Moreno E, Moreno-Delgado D, Navarro G, Hoffmann HM, Fuentes S, Rosell-Vilar S, Gasperini P, Rodríguez-Ruiz M, Medrano M, Mallol J, Cortés A, Casadó V, Lluís C, Ferré S, Ortiz J, Canela E, McCormick PJ (2014) Cocaine disrupts histamine H3 receptor modulation of dopamine D1 receptor signaling: σ1-D1-H3 receptor complexes as key targets for reducing cocaine’s effects. J Neurosci 34:3545–3558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ablordeppey SY, Fischer J, Law H, Glennon RA (2002) Probing the proposed phenyl-A region of the sigma-1 receptor. Bioorg Med Chem 10:2759–2765

    Article  CAS  PubMed  Google Scholar 

  134. Glennon RA (2005) Pharmacophore identification for sigma-1 (σ1) receptor binding: application of the “deconstruction–reconstruction–elaboration” approach. Mini Rev Med Chem 5:927–940

    Article  CAS  PubMed  Google Scholar 

  135. Giacobini E (2003) Cholinesterases: new roles in brain function and in Alzheimer’s disease. Neurochem Res 28:515–522

    Article  CAS  PubMed  Google Scholar 

  136. Kato K, Hayako H, Ishihara Y, Marui S, Iwane M, Miyamoto M (1999) TAK-147, an acetylcholinesterase inhibitor, increases choline acetyltransferase activity in cultured rat septal cholinergic neurons. Neurosci Lett 260:5–8

    Article  CAS  PubMed  Google Scholar 

  137. Birks JS, Melzer D (2000) Donepezil for mild and moderate Alzheimer’s disease. Cochrane Database Syst Rev 2000:CD001190

    Google Scholar 

  138. Yuede CM, Dong H, Csernansky JG (2007) Anti-dementia drugs and hippocampal-dependent memory in rodents. Behav Pharmacol 18:347–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Anand P, Singh B (2013) A review on cholinesterase inhibitors for Alzheimer’s disease. Arch Pharm Res 36:375–399

    Article  CAS  PubMed  Google Scholar 

  140. Maurice T, Meunier J, Feng B, Ieni J, Monaghan DT (2006) Interaction with sigma1 protein, but not N-methyl-d-aspartate receptor, is involved in the pharmacological activity of donepezil. J Pharmacol Exp Ther 317:606–614

    Article  CAS  PubMed  Google Scholar 

  141. Svensson AL, Nordberg A Tacrine and donepezil attenuate the neurotoxic effect of Αβ25-35 in rat PC12 cells. Neuroreport 9:1519–1522

    Google Scholar 

  142. Kimura M, Akasofu S, Ogura H, Sawada K (2005) Protective effect of donepezil against Aβ1-40 neurotoxicity in rat septal neurons. Brain Res 1047:72–84

    Article  CAS  PubMed  Google Scholar 

  143. Westman E, Spenger C, Oberg J, Reyer H, Pahnke J, Wahlund LO (2009) In vivo 1H-magnetic resonance spectroscopy can detect metabolic changes in APP/PS1 mice after donepezil treatment. BMC Neurosci 10:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Romberg C, Mattson MP, Mughal MR, Bussey TJ, Saksida LM (2011) Impaired attention in the 3xTgAD mouse model of Alzheimer’s disease: rescue by donepezil (Aricept). J Neurosci 31:3500–3507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ramakrishnan NK, Visser AK, Schepers M, Luurtsema G, Nyakas CJ, Elsinga PH, Ishiwata K, Dierckx RA, van Waarde A (2014) Dose-dependent sigma-1 receptor occupancy by donepezil in rat brain can be assessed with 11C-SA4503 and microPET. Psychopharmacology 231:3997–4006

    Article  CAS  PubMed  Google Scholar 

  146. Shank RP, Vaught JL, Pelley KA, Setler PE, McComsey DF, Maryanoff BE (1988) McN-5652: a highly potent inhibitor of serotonin uptake. J Pharmacol Exp Ther 247:1032–1038

    CAS  PubMed  Google Scholar 

  147. Narita N, Hashimoto K, Tomitaka S, Minabe Y (1996) Interactions of selective serotonin reuptake inhibitors with subtypes of sigma receptors in rat brain. Eur J Pharmacol 307:117–119

    Article  CAS  PubMed  Google Scholar 

  148. Villard V, Meunier J, Chevallier N, Maurice T (2011) Pharmacological interaction with the sigma11) receptor in the acute behavioral effects of antidepressants. J Pharmacol Sci 115:279–292

    Article  CAS  PubMed  Google Scholar 

  149. Omi T, Tanimukai H, Kanayama D, Sakagami Y, Tagami S, Okochi M, Morihara T, Sato M, Yanagida K, Kitasyoji A, Hara H, Imaizumi K, Maurice T, Chevallier N, Marchal S, Takeda M, Kudo T (2014) Fluvoxamine alleviates ER stress via induction of sigma-1 receptor. Cell Death Dis 5:e1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ishikawa M, Ishiwata K, Ishii K, Kimura Y, Sakata M, Naganawa M, Oda K, Miyatake R, Fujisaki M, Shimizu E, Shirayama Y, Iyo M, Hashimoto K (2007) High occupancy of sigma-1 receptors in the human brain after single oral administration of fluvoxamine: a positron emission tomography study using [11C]SA4503. Biol Psychiatry 62:878–883

    Article  CAS  PubMed  Google Scholar 

  151. Iyo M, Shirayama Y, Watanabe H, Fujisaki M, Miyatake R, Fukami G, Shiina A, Nakazato M, Shiraishi T, Ookami T, Hashimoto K (2008) Fluvoxamine as a sigma-1 receptor agonist improved cognitive impairments in a patient with schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 32:1072–1073

    Article  CAS  Google Scholar 

  152. Vamvakides A (2002) Mechanism of action of tetrahydro-N,N-dimethyl-5,5-diphenyl-3-furanemethanamine, a putative nootropic, anti-epileptic and antidepressant compound. Ann Pharm Fr 60:415–422

    CAS  PubMed  Google Scholar 

  153. Espallergues J, Lapalud P, Christopoulos A, Avlani VA, Sexton PM, Vamvakides A, Maurice T (2007) Involvement of the sigma11) receptor in the anti-amnesic, but not antidepressant-like, effects of the aminotetrahydrofuran derivative ANAVEX1-41. Br J Pharmacol 152:267–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Dong Y, Fu YM, Sun JL, Zhu YH, Sun FY, Zheng P (2005) Neurosteroid enhances glutamate release in rat prelimbic cortex via activation of α1-adrenergic and σ1 receptors. Cell Mol Life Sci 62:1003–1014

    Article  CAS  PubMed  Google Scholar 

  155. Felder CC (1995) Muscarinic acetylcholine receptors: signal transduction through multiple effectors. FASEB J 9:619–625

    CAS  PubMed  Google Scholar 

  156. Morin-Surun MP, Collin T, Denavit-Saubié M, Baulieu EE, Monnet FP (1999) Intracellular sigma1 receptor modulates phospholipase C and protein kinase C activities in the brainstem. Proc Natl Acad Sci U S A 96:8196–8199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Fernández de Sevilla D, Núñez A, Borde M, Malinow R, Buño W (2008) Cholinergic-mediated IP3-receptor activation induces long-lasting synaptic enhancement in CA1 pyramidal neurons. J Neurosci 28:1469–1478

    Article  PubMed  CAS  Google Scholar 

  158. Guo L, Zhao J, Jin G, Zhao B, Wang G, Zhang A, Zhen X (2013) SKF83959 is a potent allosteric modulator of sigma-1 receptor. Mol Pharmacol 83:577–586

    Article  CAS  PubMed  Google Scholar 

  159. Wu Z, Li L, Zheng LT, Xu Z, Guo L, Zhen X (2015) Allosteric modulation of sigma-1 receptors by SKF83959 inhibits microglia-mediated inflammation. J Neurochem 134:904–914

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tangui Maurice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG (outside the USA)

About this chapter

Cite this chapter

Maurice, T., Goguadze, N. (2017). Role of σ1 Receptors in Learning and Memory and Alzheimer’s Disease-Type Dementia. In: Smith, S., Su, TP. (eds) Sigma Receptors: Their Role in Disease and as Therapeutic Targets. Advances in Experimental Medicine and Biology, vol 964. Springer, Cham. https://doi.org/10.1007/978-3-319-50174-1_15

Download citation

Publish with us

Policies and ethics