Skip to main content

Primary Sclerosing Cholangitis (PSC): Current Concepts in Biology and Strategies for New Therapy

  • Chapter
  • First Online:
Biliary Disease

Abstract

Primary sclerosing cholangitis (PSC) is characterised morphologically by fibro-inflammatory stricture formation and typified phenotypically by strong clinical association with inflammatory bowel disease. Although rare, PSC harbours a significant and disproportionate clinical need, in which ~50% of patients develop advancing disease necessitating transplantation. These unacceptably poor outcomes highlight a critical therapeutic shortfall in hepatology, whereby no existing intervention has been shown to improve transplant-free survival. The clinical course in PSC can be unpredictable; and advances in clinical practice highlight the breadth of disease heterogeneity, that exists, whilst equally providing a more individualised assessment of patient risk. These developments are paralleled by notable pathological discovery, wherein recognition of enteric dysbiosis, essential lymphocyte recruitment pathways, and mucosal immunogenicity have driven a resurgence in clinical trial activity for appropriately stratified patient populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdalian R, Heathcote EJ. Sclerosing cholangitis: a focus on secondary causes. Hepatology. 2006;44:1063–74. doi:10.1002/hep.21405.

    Article  PubMed  Google Scholar 

  2. O’Neil M, Damjanov I, Taylor RM. Liver pathology for clinicians. Cham: Springer International Publishing; 2015.

    Book  Google Scholar 

  3. Hirschfield GM, Karlsen TH, Lindor KD, Adams DH. Primary sclerosing cholangitis. Lancet. 2013;382:1587–99. doi:10.1016/S0140-6736(13)60096-3.

    Article  PubMed  Google Scholar 

  4. Karlsen TH, Boberg KM. Update on primary sclerosing cholangitis. J Hepatol. 2013;59:571–82. doi:10.1016/j.jhep.2013.03.015.

    Article  PubMed  Google Scholar 

  5. Marchesi JR, Adams DH, Fava F, Hermes GDA, Hirschfield GM, Hold G, et al. The gut microbiota and host health: a new clinical frontier. Gut. 2015; gutjnl – 2015–309990. doi:10.1136/gutjnl-2015-309990.

  6. Trivedi PJ, Adams DH. Mucosal immunity in liver autoimmunity: a comprehensive review. J Autoimmun. 2013;46:97–111. doi:10.1016/j.jaut.2013.06.013.

    Article  CAS  PubMed  Google Scholar 

  7. Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol. 2012;9:577–89. doi:10.1038/nrgastro.2012.156.

    Article  CAS  PubMed  Google Scholar 

  8. Swamy M, Jamora C, Havran W, Hayday A. Epithelial decision makers: in search of the “epimmunome.”. Nat Immunol. 2010;11:656–65. doi:10.1038/ni.1905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Frantz AL, Rogier EW, Weber CR, Shen L, Cohen DA, Fenton LA, et al. Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides. Mucosal Immunol. 2012;5:501–12. doi:10.1038/mi.2012.23.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W, Balish E, et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun. 1998;66:5224–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Waidmann M, Bechtold O, Frick J-S, Lehr H-A, Schubert S, Dobrindt U, et al. Bacteroides vulgatus protects against Escherichia coli-induced colitis in gnotobiotic interleukin-2-deficient mice. Gastroenterology. 2003;125:162–77.

    Article  PubMed  Google Scholar 

  12. Balmer ML, Slack E, de Gottardi A, Lawson MAE, Hapfelmeier S, Miele L, et al. The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota. Sci Transl Med. 2014;6:237ra66. doi:10.1126/scitranslmed.3008618.

    Article  PubMed  CAS  Google Scholar 

  13. Moriwaki K, Balaji S, McQuade T, Malhotra N, Kang J, Chan FK-M. The necroptosis adaptor RIPK3 promotes injury-induced cytokine expression and tissue repair. Immunity. 2014;41:567–78. doi:10.1016/j.immuni.2014.09.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schneider KM, Bieghs V, Heymann F, Hu W, Dreymueller D, Liao L, et al. CX3CR1 is a gatekeeper for intestinal barrier integrity in mice: limiting steatohepatitis by maintaining intestinal homeostasis. Hepatology. 2015;62(5):1405–16. doi:10.1002/hep.27982.

    Article  CAS  PubMed  Google Scholar 

  15. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482:179–85. doi:10.1038/nature10809.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Janse M, Lamberts LE, Franke L, Raychaudhuri S, Ellinghaus E, Muri Boberg K, et al. Three ulcerative colitis susceptibility loci are associated with primary sclerosing cholangitis and indicate a role for IL2, REL, and CARD9. Hepatology. 2011;53:1977–85. doi:10.1002/hep.24307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fickert P, Pollheimer MJ, Beuers U, Lackner C, Hirschfield G, Housset C, et al. Characterization of animal models for Primary Sclerosing Cholangitis (PSC). J Hepatol. 2014; doi:10.1016/j.jhep.2014.02.006.

    PubMed Central  Google Scholar 

  18. Quraishi MN, Sergeant M, Kay G, Iqbal T, Chan J, Constantinidou C, et al. The gut adherent microbiota of PSC-IBD is distinct to that of IBD. Gut. 2016.

    Google Scholar 

  19. Kummen M, Holm K, Anmarkrud JA, Nygård S, Vesterhus M, Høivik ML, et al. The gut microbial profile in patients with primary sclerosing cholangitis is distinct from patients with ulcerative colitis without biliary disease and healthy controls. Gut. 2016;gutjnl – 2015–310500. doi:10.1136/gutjnl-2015-310500.

  20. Kevans D, Tyler AD, Holm K, Jørgensen KK, Vatn MH, Karlsen TH, et al. Characterization of intestinal microbiota in ulcerative colitis patients with and without primary sclerosing cholangitis. J Crohns Colitis. 2016;10:330–7. doi:10.1093/ecco-jcc/jjv204.

    Article  CAS  PubMed  Google Scholar 

  21. Torres J, Bao X, Goel A, Colombel J-F, Pekow J, Jabri B, et al. The features of mucosa-associated microbiota in primary sclerosing cholangitis. Aliment Pharmacol Ther. 2016;43:790–801. doi:10.1111/apt.13552.

    Article  CAS  PubMed  Google Scholar 

  22. Terjung B, Söhne J, Lechtenberg B, Gottwein J, Muennich M, Herzog V, et al. p-ANCAs in autoimmune liver disorders recognise human beta-tubulin isotype 5 and cross-react with microbial protein FtsZ. Gut. 2010;59:808–16. doi:10.1136/gut.2008.157818.

    Article  CAS  PubMed  Google Scholar 

  23. Karrar A, Broomé U, Södergren T, Jaksch M, Bergquist A, Björnstedt M, et al. Biliary epithelial cell antibodies link adaptive and innate immune responses in primary sclerosing cholangitis. Gastroenterology. 2007;132:1504–14. doi:10.1053/j.gastro.2007.01.039.

    Article  CAS  PubMed  Google Scholar 

  24. O’Mahony CA, Vierling JM. Etiopathogenesis of primary sclerosing cholangitis. Semin Liver Dis. 2006;26:3–21. doi:10.1055/s-2006-933559.

    Article  PubMed  Google Scholar 

  25. Borchers AT, Shimoda S, Bowlus C, Keen CL, Gershwin ME. Lymphocyte recruitment and homing to the liver in primary biliary cirrhosis and primary sclerosing cholangitis. Semin Immunopathol. 2009;31:309–22. doi:10.1007/s00281-009-0167-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liaskou E, Jeffery LE, Trivedi PJ, Reynolds GM, Suresh S, Bruns T, et al. Loss of CD28 expression by liver-infiltrating T cells contributes to pathogenesis of primary sclerosing cholangitis. Gastroenterology. 2014;147:221–32.e7. doi:10.1053/j.gastro.2014.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lau AH, de Creus A, Lu L, Thomson AW. Liver tolerance mediated by antigen presenting cells: fact or fiction? Gut. 2003;52:1075–8. doi:10.1136/gut.52.8.1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sebode M, Peiseler M, Franke B, Schwinge D, Schoknecht T, Wortmann F, et al. Reduced FOXP3(+) regulatory T cells in patients with primary sclerosing cholangitis are associated with IL2RA gene polymorphisms. J Hepatol. 2014;60:1010–6. doi:10.1016/j.jhep.2013.12.027.

    Article  CAS  PubMed  Google Scholar 

  29. Wakabayashi K, Lian Z-X, Moritoki Y, Lan RY, Tsuneyama K, Chuang Y-H, et al. IL-2 receptor alpha(−/−) mice and the development of primary biliary cirrhosis. Hepatology. 2006;44:1240–9. doi:10.1002/hep.21385.

    Article  CAS  PubMed  Google Scholar 

  30. Katt J, Schwinge D, Schoknecht T, Quaas A, Sobottka I, Burandt E, et al. Increased Th17 response to pathogen stimulation in patients with primary sclerosing cholangitis. Hepatology. 2013;58(3):1084–93. doi:10.1002/hep.26447.

    Article  CAS  PubMed  Google Scholar 

  31. Sano T, Huang W, Hall JA, Yang Y, Chen A, Gavzy SJ, et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell. 2015; doi:10.1016/j.cell.2015.08.061.

    PubMed  PubMed Central  Google Scholar 

  32. Trivedi PJ, Bruns T, Ward S, Mai M, Schmidt C, Hirschfield GM, et al. Intestinal CCL25 expression is increased in colitis and correlates with inflammatory activity. J Autoimmun. 2016;68:98–104. doi:10.1016/j.jaut.2016.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Eksteen B, Liaskou E, Adams DH. Lymphocyte homing and its role in the pathogenesis of IBD. Inflamm Bowel Dis. 2008;14:1298–312. doi:10.1002/ibd.20453.

    Article  PubMed  Google Scholar 

  34. Oo YH, Adams DH. The role of chemokines in the recruitment of lymphocytes to the liver. J Autoimmun. 2010;34:45–54. doi:10.1016/j.jaut.2009.07.011.

    Article  CAS  PubMed  Google Scholar 

  35. Eksteen B, Grant AJ, Miles A, Curbishley SM, Lalor PF, Hübscher SG, et al. Hepatic endothelial CCL25 mediates the recruitment of CCR9+ gut-homing lymphocytes to the liver in primary sclerosing cholangitis. J Exp Med. 2004;200:1511–7. doi:10.1084/jem.20041035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grant AJ, Lalor PF, Hübscher SG, Briskin M, Adams DH. MAdCAM-1 expressed in chronic inflammatory liver disease supports mucosal lymphocyte adhesion to hepatic endothelium (MAdCAM-1 in chronic inflammatory liver disease). Hepatology. 2001;33:1065–72. doi:10.1053/jhep.2001.24231.

    Article  CAS  PubMed  Google Scholar 

  37. Liaskou E, Karikoski M, Reynolds GM, Lalor PF, Weston CJ, Pullen N, et al. Regulation of mucosal addressin cell adhesion molecule 1 expression in human and mice by vascular adhesion protein 1 amine oxidase activity. Hepatology. 2011;53:661–72. doi:10.1002/hep.24085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eksteen B, Mora JR, Haughton EL, Henderson NC, Lee-Turner L, Villablanca EJ, et al. Gut homing receptors on CD8 T cells are retinoic acid dependent and not maintained by liver dendritic or stellate cells. Gastroenterology. 2009;137:320–9. doi:10.1053/j.gastro.2009.02.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Neumann K, Kruse N, Szilagyi B, Erben U, Rudolph C, Flach A, et al. Connecting liver and gut: murine liver sinusoidal endothelium induces gut tropism of CD4+ T cells via retinoic acid. Hepatology. 2012;55:1976–84. doi:10.1002/hep.24816.

    Article  CAS  PubMed  Google Scholar 

  40. Omenetti S, Brogi M, Goodman WA, Croniger CM, Eid S, Huang AY, et al. Dysregulated intrahepatic CD4(+) T-cell activation drives liver inflammation in ileitis-prone SAMP1/YitFc mice. Cell Mol Gastroenterol Hepatol. 2015;1:406–19. doi:10.1016/j.jcmgh.2015.05.007.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Oo YH, Banz V, Kavanagh D, Liaskou E, Withers DR, Humphreys E, et al. CXCR3-dependent recruitment and CCR6-mediated positioning of Th-17 cells in the inflamed liver. J Hepatol. 2012;57:1044–51. doi:10.1016/j.jhep.2012.07.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Duboc H, Rajca S, Rainteau D, Benarous D, Maubert M-A, Quervain E, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut. 2013;62:531–9. doi:10.1136/gutjnl-2012-302578.

    Article  CAS  PubMed  Google Scholar 

  43. Karlsen TH, Hov JR. Genetics of cholestatic liver disease in 2010. Curr Opin Gastroenterol. 2010;26:251–8. doi:10.1097/MOG.0b013e328336807d.

    Article  CAS  PubMed  Google Scholar 

  44. Jahnel J, Fickert P, Langner C, Högenauer C, Silbert D, Gumhold J, et al. Impact of experimental colitis on hepatobiliary transporter expression and bile duct injury in mice. Liver Int. 2009;29:1316–25. doi:10.1111/j.1478-3231.2009.02044.x.

    Article  CAS  PubMed  Google Scholar 

  45. Tabibian JH, O’Hara SP, Trussoni CE, Tietz PS, Splinter PL, Mounajjed T, et al. Absence of the intestinal microbiota exacerbates hepatobiliary disease in a murine model of primary sclerosing cholangitis. Hepatology. 2015. doi:10.1002/hep.27927.

  46. Pollheimer MJ, Fickert P. Animal models in primary biliary cirrhosis and primary sclerosing cholangitis. Clin Rev Allergy Immunol. 2015;48(2–3):207–17. doi:10.1007/s12016-014-8442-y.

    Article  PubMed  Google Scholar 

  47. Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, et al. Fate-tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its etiology. Nat Commun. 2013;4:2823. doi:10.1038/ncomms3823.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Trautwein C, Friedman SL, Schuppan D, Pinzani M. Hepatic fibrosis: concept to treatment. J Hepatol. 2015;62:S15–24. doi:10.1016/j.jhep.2015.02.039.

    Article  CAS  PubMed  Google Scholar 

  49. Bergquist A, Montgomery SM, Bahmanyar S, Olsson R, Danielsson A, Lindgren S, et al. Increased risk of primary sclerosing cholangitis and ulcerative colitis in first-degree relatives of patients with primary sclerosing cholangitis. Clin Gastroenterol Hepatol. 2008;6:939–43. doi:10.1016/j.cgh.2008.03.016.

    Article  PubMed  Google Scholar 

  50. Folseraas T, Liaskou E, Anderson CA, Karlsen TH. Genetics in PSC: what do the “risk genes” teach us? Clin Rev Allergy Immunol. 2014;48:154–64. doi:10.1007/s12016-014-8417-z.

    Article  CAS  Google Scholar 

  51. Lammert C, Juran BD, Schlicht E, Xie X, Atkinson EJ, de Andrade M, et al. Reduced coffee consumption among individuals with primary sclerosing cholangitis but not primary biliary cirrhosis. Clin Gastroenterol Hepatol. 2014; doi:10.1016/j.cgh.2013.12.036.

    PubMed Central  Google Scholar 

  52. Che B, Wang L, Zhang Z, Zhang Y, Deng Y. Distribution and accumulation of caffeine in rat tissues and its inhibition on semicarbazide-sensitive amine oxidase. Neurotoxicology. 2012;33:1248–53. doi:10.1016/j.neuro.2012.07.004.

    Article  CAS  PubMed  Google Scholar 

  53. Henriksen EKK, Melum E, Karlsen TH. Update on primary sclerosing cholangitis genetics. Curr Opin Gastroenterol. 2014;30:310–9. doi:10.1097/MOG.0000000000000052.

    Article  PubMed  Google Scholar 

  54. Karlsen TH, Lammert F, Thompson RJ. Genetics of liver disease: from pathophysiology to clinical practice. J Hepatol. 2015;62:S6–14. doi:10.1016/j.jhep.2015.02.025.

    Article  CAS  PubMed  Google Scholar 

  55. Hirschfield GM, Chapman RW, Karlsen TH, Lammert F, Lazaridis KN, Mason AL. The genetics of complex cholestatic disorders. Gastroenterology. 2013;144:1357–74. doi:10.1053/j.gastro.2013.03.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu JZ, Hov JR, Folseraas T, Ellinghaus E, Rushbrook SM, Doncheva NT, et al. Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis. Nat Genet. 2013; doi:10.1038/ng.2616.

    Google Scholar 

  57. Gershon ES, Grennan KS. Genetic and genomic analyses as a basis for new diagnostic nosologies. Dialogues Clin Neurosci. 2015;17:69–78.

    PubMed  PubMed Central  Google Scholar 

  58. Sollid LM, Jabri B. Triggers and drivers of autoimmunity: lessons from coeliac disease. Nat Rev Immunol. 2013;13:294–302. doi:10.1038/nri3407.

    Article  CAS  PubMed  Google Scholar 

  59. Thorsby E. A short history of HLA. Tissue Antigens. 2009;74:101–16. doi:10.1111/j.1399-0039.2009.01291.x.

    Article  CAS  PubMed  Google Scholar 

  60. Karlsen TH, Franke A, Melum E, Kaser A, Hov JR, Balschun T, et al. Genome-wide association analysis in primary sclerosing cholangitis. Gastroenterology. 2010;138:1102–11. doi:10.1053/j.gastro.2009.11.046.

    Article  PubMed  Google Scholar 

  61. Goyette P, Boucher G, Mallon D, Ellinghaus E, Jostins L, Huang H, et al. High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat Genet. 2015;47:172–9. doi:10.1038/ng.3176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bo X, Broome U, Remberger M, Sumitran-Holgersson S. Tumour necrosis factor alpha impairs function of liver derived T lymphocytes and natural killer cells in patients with primary sclerosing cholangitis. Gut. 2001;49:131–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Steinberg MW, Shui J-W, Ware CF, Kronenberg M. Regulating the mucosal immune system: the contrasting roles of LIGHT, HVEM, and their various partners. Semin Immunopathol. 2009;31:207–21. doi:10.1007/s00281-009-0157-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Reizis B. Regulation of plasmacytoid dendritic cell development. Curr Opin Immunol. 2010;22:206–11. doi:10.1016/j.coi.2010.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sokol H, Conway KL, Zhang M, Choi M, MORIN B, CAO Z, et al. Card9 mediates intestinal epithelial cell restitution, T-helper 17 responses, and control of bacterial infection in mice. Gastroenterology. 2013;145:591–601.e3. doi:10.1053/j.gastro.2013.05.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ellinghaus D, Jostins L, Spain SL, Cortes A, Bethune J, Han B, et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet. 2016; doi:10.1038/ng.3528.

    PubMed Central  Google Scholar 

  67. Häuser F, Deyle C, Berard D, Neukirch C, Glowacki C, Bickmann JK, et al. Macrophage-stimulating protein polymorphism rs3197999 is associated with a gain of function: implications for inflammatory bowel disease. Genes Immun. 2012;13:321–7. doi:10.1038/gene.2011.88.

    Article  PubMed  CAS  Google Scholar 

  68. Lee D-H, Esworthy RS, Chu C, Pfeifer GP, Chu F-F. Mutation accumulation in the intestine and colon of mice deficient in two intracellular glutathione peroxidases. Cancer Res. 2006;66:9845–51. doi:10.1158/0008-5472.CAN-06-0732.

    Article  CAS  PubMed  Google Scholar 

  69. Folseraas T, Melum E, Rausch P, Juran BD, Ellinghaus E, Shiryaev A, et al. Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci. J Hepatol. 2012;57:366–75. doi:10.1016/j.jhep.2012.03.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rupp C, Friedrich K, Folseraas T, Wannhoff A, Bode KA, Weiss K-H, et al. Fut2 genotype is a risk factor for dominant stenosis and biliary candida infections in primary sclerosing cholangitis. Aliment Pharmacol Ther. 2014;39:873–82. doi:10.1111/apt.12663.

    Article  CAS  PubMed  Google Scholar 

  71. Gaj P, Maryan N, Hennig EE, Ledwon JK, Paziewska A, Majewska A, et al. Pooled sample-based GWAS: a cost-effective alternative for identifying colorectal and prostate cancer risk variants in the Polish population. PLoS One. 2012;7 doi:10.1371/journal.pone.0035307.

  72. Nakagawa H, Hikiba Y, Hirata Y, Font-Burgada J, Sakamoto K, Hayakawa Y, et al. Loss of liver E-cadherin induces sclerosing cholangitis and promotes carcinogenesis. Proc Natl Acad Sci U S A. 2014;111:1090–5. doi:10.1073/pnas.1322731111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Trivedi PJ, Adams DH. Gut – liver immunity. J Hepatol. 2015; doi:10.1016/j.jhep.2015.12.002.

    Google Scholar 

  74. Boonstra K, Weersma RK, van Erpecum KJ, Rauws EA, Spanier BWM, Poen AC, et al. Population-based epidemiology, malignancy risk, and outcome of primary sclerosing cholangitis. Hepatology. 2013;58:2045–55. doi:10.1002/hep.26565.

    Article  CAS  PubMed  Google Scholar 

  75. Gregorio GV, Portmann B, Karani J, Harrison P, Donaldson PT, Vergani D, et al. Autoimmune hepatitis/sclerosing cholangitis overlap syndrome in childhood: a 16-year prospective study. Hepatology. 2001;33:544–53. doi:10.1053/jhep.2001.22131.

    Article  CAS  PubMed  Google Scholar 

  76. Trivedi PJ, Chapman RW. PSC, AIH and overlap syndrome in inflammatory bowel disease. Clin Res Hepatol Gastroenterol. 2012;36:420–36. doi:10.1016/j.clinre.2011.10.007.

    Article  CAS  PubMed  Google Scholar 

  77. Boonstra K, van Erpecum KJ, van Nieuwkerk KMJ, Drenth JPH, Poen AC, Witteman BJM, et al. Primary sclerosing cholangitis is associated with a distinct phenotype of inflammatory bowel disease. Inflamm Bowel Dis. 2012;18:2270–6. doi:10.1002/ibd.22938.

    Article  PubMed  Google Scholar 

  78. Trivedi PJ, Corpechot C, Pares A, Hirschfield GM. Risk stratification in autoimmune cholestatic liver diseases: opportunities for clinicians and trialists. Hepatology. 2015; doi:10.1002/hep.28128.

    PubMed Central  Google Scholar 

  79. Karlsen TH, Vesterhus M, Boberg KM. Review article: controversies in the management of primary biliary cirrhosis and primary sclerosing cholangitis. Aliment Pharmacol Ther. 2014;39:282–301. doi:10.1111/apt.12581.

    Article  CAS  PubMed  Google Scholar 

  80. Lunder A, Hov J, Borthne A, Gleditsch J, Johannsen G. et al. Prevalence of sclerosing cholangitis detected by magnetic resonance cholangiography in patients with long-term inflammatory bowel disease. Gastroenterology 2016;151(4):660–9.

    Google Scholar 

  81. Charman S, Copley L, Tovikkai C, Meulen J van der. UK liver transplant audit (NHS Blood and Transplant). 2012.

    Google Scholar 

  82. Fosby B, Melum E, Bjøro K, Bennet W, Rasmussen A, Andersen IM, et al. Liver transplantation in the Nordic countries - an intention to treat and post-transplant analysis from The Nordic Liver Transplant Registry 1982–2013. Scand J Gastroenterol. 2015;50:797–808. doi:10.3109/00365521.2015.1036359.

    Article  PubMed  PubMed Central  Google Scholar 

  83. de Valle MB, Björnsson E, Lindkvist B. Mortality and cancer risk related to primary sclerosing cholangitis in a Swedish population-based cohort. Liver Int. 2012;32:441–8. doi:10.1111/j.1478-3231.2011.02614.x.

    Article  PubMed  CAS  Google Scholar 

  84. Tischendorf JJW, Hecker H, Krüger M, Manns MP, Meier PN. Characterization, outcome, and prognosis in 273 patients with primary sclerosing cholangitis: a single center study. Am J Gastroenterol. 2007;102:107–14. doi:10.1111/j.1572-0241.2006.00872.x.

    Article  PubMed  Google Scholar 

  85. Rizvi S, Eaton JE, Gores GJ. Primary sclerosing cholangitis as a pre-malignant biliary tract disease: surveillance and management. Clin Gastroenterol Hepatol. 2015; doi:10.1016/j.cgh.2015.05.035.

    PubMed  PubMed Central  Google Scholar 

  86. Razumilava N, Gores GJ, Lindor KD. Cancer surveillance in patients with primary sclerosing cholangitis. Hepatology. 2011;54:1842–52. doi:10.1002/hep.24570.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Karlsen TH, Schrumpf E, Boberg KM. Gallbladder polyps in primary sclerosing cholangitis: not so benign. Curr Opin Gastroenterol. 2008;24:395–9. doi:10.1097/MOG.0b013e3282f5727a.

    Article  PubMed  Google Scholar 

  88. EASL. Clinical practice guidelines: management of cholestatic liver diseases. J Hepatol. 2009;51:237–67. doi:10.1016/j.jhep.2009.04.009.

    Article  Google Scholar 

  89. Angulo P, Maor-Kendler Y, Lindor KD. Small-duct primary sclerosing cholangitis: a long-term follow-up study. Hepatology. 2002;35:1494–500. doi:10.1053/jhep.2002.33202.

    Article  PubMed  Google Scholar 

  90. Rudolph G, Gotthardt D, Klöters-Plachky P, Kulaksiz H, Rost D, Stiehl A. Influence of dominant bile duct stenoses and biliary infections on outcome in primary sclerosing cholangitis. J Hepatol. 2009;51:149–55. doi:10.1016/j.jhep.2009.01.023.

    Article  PubMed  Google Scholar 

  91. Ngu JH, Gearry RB, Wright AJ, Stedman CAM. Inflammatory bowel disease is associated with poor outcomes of patients with primary sclerosing cholangitis. Clin Gastroenterol Hepatol. 2011;9:1092–7. doi:10.1016/j.cgh.2011.08.027.

    Article  PubMed  Google Scholar 

  92. Burak K, Angulo P, Pasha TM, Egan K, Petz J, Lindor KD. Incidence and risk factors for cholangiocarcinoma in primary sclerosing cholangitis. Am J Gastroenterol. 2004;99:523–6. doi:10.1111/j.1572-0241.2004.04067.x.

    Article  PubMed  Google Scholar 

  93. Rudolph G, Gotthardt D, Kloeters-Plachky P, Rost D, Kulaksiz H, Stiehl A. In PSC with dominant bile duct stenosis, IBD is associated with an increase of carcinomas and reduced survival. J Hepatol. 2010;53:313–7. doi:10.1016/j.jhep.2010.02.030.

    Article  PubMed  Google Scholar 

  94. Boberg KM, Bergquist A, Mitchell S, Pares A, Rosina F, Broomé U, et al. Cholangiocarcinoma in primary sclerosing cholangitis: risk factors and clinical presentation. Scand J Gastroenterol. 2002;37:1205–11.

    Article  CAS  PubMed  Google Scholar 

  95. Janse M, Lamberts LE, Verdonk RC, Weersma RK. IBD is associated with an increase in carcinoma in PSC irrespective of the presence of dominant bile duct stenosis. J Hepatol. 2012;57:473–4. doi:10.1016/j.jhep.2012.02.034.

    Article  PubMed  Google Scholar 

  96. Al Mamari S1, Djordjevic J, Halliday JS, Chapman RW. Improvement of serum alkaline phosphatase to <1.5 upper limit of normal predicts better outcome and reduced risk of cholangiocarcinoma in primary sclerosing cholangitis. J Hepatol. 2013;58(2):329–34.

    Google Scholar 

  97. Lindström L, Hultcrantz R, Boberg KM, Friis-Liby I, Bergquist A. Association between reduced levels of alkaline phosphatase and survival times of patients with primary sclerosing cholangitis. Clin Gastroenterol Hepatol. 2013;11(7):841–6.

    Google Scholar 

  98. de Vries EMG, Verheij J, Hubscher SG, Leeflang MMR, Boonstra K, Beuers U, et al. Applicability and prognostic value of histologic scoring systems in primary sclerosing cholangitis. J Hepatol. 2015; doi:10.1016/j.jhep.2015.06.008.

    Google Scholar 

  99. Corpechot C, Gaouar F, El Naggar A, Kemgang A, Wendum D, Poupon R, et al. Baseline values and changes in liver stiffness measured by transient elastography are associated with severity of fibrosis and outcomes of patients with primary sclerosing cholangitis. Gastroenterology. 2014;146:970–9. doi:10.1053/j.gastro.2013.12.030.

    Article  PubMed  Google Scholar 

  100. Vesterhus M, Hov JR, Holm A, Schrumpf E, Nygård S, Godang K, et al. Enhanced liver fibrosis score predicts transplant-free survival in primary sclerosing cholangitis. Hepatology. 2015;62:188–97. doi:10.1002/hep.27825.

    Article  PubMed  Google Scholar 

  101. Beuers U. Drug insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis. Nat Clin Pract Gastroenterol Hepatol. 2006;3:318–28. doi:10.1038/ncpgasthep0521.

    Article  CAS  PubMed  Google Scholar 

  102. Wunsch E, Trottier J, Milkiewicz M, Raszeja-Wyszomirska J, Hirschfield GM, Barbier O, et al. Prospective evaluation of ursodeoxycholic acid withdrawal in patients with primary sclerosing cholangitis. Hepatology. 2014;60:931–40. doi:10.1002/hep.27074.

    Article  CAS  PubMed  Google Scholar 

  103. Lindor KD, Kowdley KV, Luketic VAC, Harrison ME, McCashland T, Befeler AS, et al. High-dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis. Hepatology. 2009;50:808–14. doi:10.1002/hep.23082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Imam MH, Sinakos E, Gossard AA, Kowdley KV, Luketic VA, Edwyn Harrison M, et al. High-dose ursodeoxycholic acid increases risk of adverse outcomes in patients with early stage primary sclerosing cholangitis. Aliment Pharmacol Ther. 2011;34:1185–92. doi:10.1111/j.1365-2036.2011.04863.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chapman R, Fevery J, Kalloo A, Nagorney DM, Boberg KM, Shneider B, et al. Diagnosis and management of primary sclerosing cholangitis. Hepatology. 2010;51:660–78. doi:10.1002/hep.23294.

    Article  CAS  PubMed  Google Scholar 

  106. Lindor KD, Kowdley KV, Harrison ME. ACG clinical guideline: primary sclerosing cholangitis. Am J Gastroenterol. 2015;110:646–59. doi:10.1038/ajg.2015.112.

    Article  CAS  PubMed  Google Scholar 

  107. Pardi DS, Loftus EV, Kremers WK, Keach J, Lindor KD. Ursodeoxycholic acid as a chemopreventive agent in patients with ulcerative colitis and primary sclerosing cholangitis. Gastroenterology. 2003;124:889–93. doi:10.1053/gast.2003.50156.

    Article  CAS  PubMed  Google Scholar 

  108. Lindström L, Boberg KM, Wikman O, Friis-Liby I, Hultcrantz R, Prytz H, et al. High dose ursodeoxycholic acid in primary sclerosing cholangitis does not prevent colorectal neoplasia. Aliment Pharmacol Ther. 2012;35:451–7. doi:10.1111/j.1365-2036.2011.04966.x.

    Article  PubMed  CAS  Google Scholar 

  109. Eaton JE, Silveira MG, Pardi DS, Sinakos E, Kowdley KV, Luketic VAC, et al. High-dose ursodeoxycholic acid is associated with the development of colorectal neoplasia in patients with ulcerative colitis and primary sclerosing cholangitis. Am J Gastroenterol. 2011;106:1638–45. doi:10.1038/ajg.2011.156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lüth S, Kanzler S, Frenzel C, Kasper HU, Dienes HP, Schramm C, et al. Characteristics and long-term prognosis of the autoimmune hepatitis/primary sclerosing cholangitis overlap syndrome. J Clin Gastroenterol. 2009;43:75–80. doi:10.1097/MCG.0b013e318157c614.

    Article  PubMed  Google Scholar 

  111. Abdo AA, Bain VG, Kichian K, Lee SS. Evolution of autoimmune hepatitis to primary sclerosing cholangitis: a sequential syndrome. Hepatology. 2002;36:1393–9. doi:10.1002/hep.1840360615.

    Article  PubMed  Google Scholar 

  112. Floreani A, Rizzotto ER, Ferrara F, Carderi I, Caroli D, Blasone L, et al. Clinical course and outcome of autoimmune hepatitis/primary sclerosing cholangitis overlap syndrome. Am J Gastroenterol. 2005;100:1516–22. doi:10.1111/j.1572-0241.2005.41841.x.

    Article  PubMed  Google Scholar 

  113. Berntsen NL, Klingenberg O, Juran BD, Benito de Valle M, Lindkvist B, Lazaridis KN, et al. Association between HLA haplotypes and increased serum levels of IgG4 in patients with primary sclerosing cholangitis. Gastroenterology. 2015;148:924–7.e2. doi:10.1053/j.gastro.2015.01.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Benito de Valle M, Müller T, Björnsson E, Otten M, Volkmann M, Guckelberger O, et al. The impact of elevated serum IgG4 levels in patients with primary sclerosing cholangitis. Dig Liver Dis. 2014;46:903–8. doi:10.1016/j.dld.2014.06.010.

    Article  CAS  PubMed  Google Scholar 

  115. Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–9. doi:10.1038/nature11552.

    Article  CAS  PubMed  Google Scholar 

  116. Hammel P, Couvelard A, O’Toole D, Ratouis A, Sauvanet A, Fléjou JF, et al. Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct. N Engl J Med. 2001;344:418–23. doi:10.1056/NEJM200102083440604.

    Article  CAS  PubMed  Google Scholar 

  117. Teng MWL, Bowman EP, McElwee JJ, Smyth MJ, Casanova J-L, Cooper AM, et al. IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat Med. 2015;21:719–29. doi:10.1038/nm.3895.

    Article  CAS  PubMed  Google Scholar 

  118. Danese S, Vuitton L, Peyrin-Biroulet L. Biologic agents for IBD: practical insights. Nat Rev Gastroenterol Hepatol. 2015;12:537–45. doi:10.1038/nrgastro.2015.135.

    Article  CAS  PubMed  Google Scholar 

  119. Feagan BG, Rutgeerts P, Sands BE, Hanauer S, Colombel J-F, Sandborn WJ, et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2013;369:699–710. doi:10.1056/NEJMoa1215734.

    Article  CAS  PubMed  Google Scholar 

  120. Meszaros M, Pageaux G-P, Altwegg R. Management of ulcerative colitis using vedolizumab after liver transplantation for primary sclerosing cholangitis. J Crohns Colitis. 2016;10:236. doi:10.1093/ecco-jcc/jjv182.

    Article  PubMed  Google Scholar 

  121. Weston CJ, Adams DH. Hepatic consequences of vascular adhesion protein-1 expression. J Neural Transm. 2011;118:1055–64. doi:10.1007/s00702-011-0647-0.

    Article  CAS  PubMed  Google Scholar 

  122. Schuppan D, Kim YO. Evolving therapies for liver fibrosis. J Clin Invest. 2013;123:1887–901. doi:10.1172/JCI66028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Carpino G, Cardinale V, Renzi A, Hov JR, Berloco PB, Rossi M, et al. Activation of biliary tree stem cells within peribiliary glands in primary sclerosing cholangitis. J Hepatol. 2015;63:1220–8. doi:10.1016/j.jhep.2015.06.018.

    Article  PubMed  Google Scholar 

  124. Williams MJ, Clouston AD, Forbes SJ. Links between hepatic fibrosis, ductular reaction, and progenitor cell expansion. Gastroenterology. 2014;146:349–56. doi:10.1053/j.gastro.2013.11.034.

    Article  PubMed  Google Scholar 

  125. Peng Z-W, Ikenaga N, Liu SB, Sverdlov DY, Vaid KA, Dixit R, et al. Integrin αvβ6 critically regulates hepatic progenitor cell function and promotes ductular reaction, fibrosis and tumorigenesis. Hepatology. 2015; doi:10.1002/hep.28274.

    Google Scholar 

  126. Eberlein C, Kendrew J, McDaid K, Alfred A, Kang JS, Jacobs VN, et al. A human monoclonal antibody 264RAD targeting αvβ6 integrin reduces tumour growth and metastasis, and modulates key biomarkers in vivo. Oncogene. 2013;32:4406–16. doi:10.1038/onc.2012.460.

    Article  CAS  PubMed  Google Scholar 

  127. Beuers U, Trauner M, Jansen P, Poupon R. New paradigms in the treatment of hepatic cholestasis: from UDCA to FXR, PXR and beyond. J Hepatol. 2015;62:S25–37. doi:10.1016/j.jhep.2015.02.023.

    Article  CAS  PubMed  Google Scholar 

  128. Baghdasaryan A, Fuchs CD, Österreicher CH, Lemberger UJ, Halilbasic E, Påhlman I, et al. Inhibition of intestinal bile acid absorption improves cholestatic liver and bile duct injury in a mouse model of sclerosing cholangitis. J Hepatol. 2016;64:674–81. doi:10.1016/j.jhep.2015.10.024.

    Article  CAS  PubMed  Google Scholar 

  129. Hirschfield GM, Mason A, Luketic V, Lindor K, Gordon SC, Mayo M, et al. Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology. 2015;148:751–61.e8. doi:10.1053/j.gastro.2014.12.005.

    Article  CAS  PubMed  Google Scholar 

  130. Torres J, Bao X, Iuga AC, Chen A, Harpaz N, Ullman T, et al. Farnesoid X receptor expression is decreased in colonic mucosa of patients with primary sclerosing cholangitis and colitis-associated neoplasia. Inflamm Bowel Dis. 2013;19:275–82. doi:10.1097/MIB.0b013e318286ff2e.

    Article  PubMed  Google Scholar 

  131. Karlsen TH, Lie BA, Frey Frøslie K, Thorsby E, Broomé U, Schrumpf E, et al. Polymorphisms in the steroid and xenobiotic receptor gene influence survival in primary sclerosing cholangitis. Gastroenterology. 2006;131:781–7. doi:10.1053/j.gastro.2006.05.057.

    Article  CAS  PubMed  Google Scholar 

  132. Wang Y-D, Chen W-D, Yu D, Forman BM, Huang W. The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor κ light-chain enhancer of activated B cells (NF-κB) in mice. Hepatology. 2011;54:1421–32. doi:10.1002/hep.24525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Baghdasaryan A, Claudel T, Gumhold J, Silbert D, Adorini L, Roda A, et al. Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2-/- (Abcb4-/-) mouse cholangiopathy model by promoting biliary HCO-3 output. Hepatology. 2011;54:1303–12. doi: 10.1002/hep.24537.

  134. Reich M, Deutschmann K, Sommerfeld A, Klindt C, Kluge S, Kubitz R, et al. TGR5 is essential for bile acid-dependent cholangiocyte proliferation in vivo and in vitro. Gut. 2016;65:487–501. doi:10.1136/gutjnl-2015-309458.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom H. Karlsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Trivedi, P.J., Karlsen, T.H. (2017). Primary Sclerosing Cholangitis (PSC): Current Concepts in Biology and Strategies for New Therapy. In: Hirschfield, G., Adams, D., Liaskou, E. (eds) Biliary Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-50168-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50168-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50166-6

  • Online ISBN: 978-3-319-50168-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics