Skip to main content

Drug-Induced Cholestasis: Mechanisms and Importance

  • Chapter
  • First Online:
Biliary Disease

Abstract

Drug-induced liver injury (DILI) is classified as cholestatic in 25% of cases based on the pattern of liver enzyme elevation in the absence of evidence of biliary obstruction. Even when the drug responsible for the injury has been discontinued, 7.8% of those with drug-induced cholestasis die; when recovery occurs, it is typically slower in this form of DILI than in hepatocellular cases. Chronicity of cholestasis is reflected by ductopenia on histology and is associated with poor quality of life. Although animal and in vitro experiments investigating drug-induced cholestasis have focused on the mechanisms and transporters involved in the secretion of bile from hepatocytes into the canaliculi, human studies investigating genetic susceptibility to DILI have revealed the importance of adaptive immune system in its pathogenesis. The first genome-wide association study (GWAS) performed for any form of DILI demonstrated a very strong association between flucloxacillin DILI and the class I HLA allele B*57:01, although the majority of these reactions do not exhibit obvious features of hypersensitivity. Another GWAS confirmed a previously described association between co-amoxiclav-induced DILI and the DRB1*15:01; this study also described another novel association involving HLA-A*02:01. A candidate gene study from Japan involving cases of ticlopidine-induced DILI, the majority of which had cholestasis, found an association with the HLA class I allele A*33:03. Activation of T-cells requires drug gaining protein reactivity and presentation of the drug-protein adduct by antigen-presenting cells expressing specific HLA; strong local T-cell responses within the biliary system would result in predominantly biliary injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aithal GP, Watkins PB, Andrade RJ, Larrey D, Molokhia M, Takikawa H, et al. Case definition and phenotype standardization in Drug-Induced Liver Injury (DILI). Clin Pharmacol Ther. 2011;89:806–15.

    Article  CAS  PubMed  Google Scholar 

  2. Andrade RJ, Lucena MI, Fernandez ME, et al. Drug induced liver injury: an analysis of 461 incidences submitted to the Spanish registry over a 10-year period. Gastroenterology. 2005;129:512–21.

    Article  PubMed  Google Scholar 

  3. Andrade RJ, Lucena MI, Kaplowitz N, et al. Outcome of acute idiosyncratic drug-induced liver injury: long-term follow-up in a hepatotoxicity registry. Hepatology. 2006;44:1581–8.

    Article  CAS  PubMed  Google Scholar 

  4. Arias IM. Cyclosporin, the biology of the bile canaliculus, and cholestasis. Gastroenterology. 1993;104(5):1558–60.

    Article  CAS  PubMed  Google Scholar 

  5. Ariyoshi N, Iga Y, Hirata K, Sato Y, Miura G, Ishii I, et al. Enhanced susceptibility of HLA-mediated ticlopidine-induced idiosyncratic hepatotoxicity by CYP2B6 polymorphism in Japanese. Drug Metab Pharmacokinet. 2010;25:298–306.

    Article  CAS  PubMed  Google Scholar 

  6. Bharadwaj M, Illing P, Theodossis A, Purcell AW, Rossjohn J, Mccluskey J. Drug hypersensitivity and human leukocyte antigens of the major histocompatibility complex. Annu Rev Pharmacol Toxicol. 2012;52:401–31.

    Article  CAS  PubMed  Google Scholar 

  7. Bhatnagar P, Day CP, Aithal G, Pirmohamed M, Bernal W, Daly AK. Genetic variants of hepatic transporters and susceptibility to drug induced liver injury. Toxicology. 2008;253:10–10.

    Google Scholar 

  8. Björnsson ES, Bergmann OM, Björnsson HK, Kvaran RB, Olafsson S. Incidence, presentation, and outcomes in patients with drug-induced liver injury in the general population of Iceland. Gastroenterology. 2013;144(7):1419–25. 1425.e1–3; quiz e19–20

    Article  PubMed  Google Scholar 

  9. Bossard R, Stieger B, O’Neill B, Fricker G, Meier PJ. Ethinylestradiol treatment induces multiple canalicular membrane transport alterations in rat liver. J Clin Invest. 1993;91(6):2714–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chalasani N, Fontana RJ, Bonkovsky HL, et al. Causes, clinical features, and outcomes from a prospective study of drug-induced liver injury in the United States. Gastroenterology. 2008;135:1924–34.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Choi JH, Ahn BM, Yi J, Lee JH, Nam SW, Chon CY, Han KH, et al. MRP2 haplotypes confer differential susceptibility to toxic liver injury. Pharmacogenet Genomics. 2007;17:403–15.

    Article  CAS  PubMed  Google Scholar 

  12. Daly AK. Using genome-wide association studies to identify genes important in serious adverse drug reactions. Annu Rev Pharmacol Toxicol. 2012;52:21–35.

    Article  CAS  PubMed  Google Scholar 

  13. Daly AK, Donaldson PT, Bhatnagar P, Shen Y, Pe’er I, Floratos A, et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet. 2009;41:816–9.

    Article  CAS  PubMed  Google Scholar 

  14. Donaghy L, Barry FJ, Hunter JG, Stableforth W, Murray IA, Palmer J, et al. Clinical and laboratory features and natural history of seronegative hepatitis in a nontransplant centre. Eur J Gastroenterol Hepatol. 2013;25(10):1159–64.

    CAS  PubMed  Google Scholar 

  15. Donaldson PT, Daly AK, Henderson J, Graham J, Pirmohamed M, Bernal W, et al. Human leucocyte antigen class II genotype in susceptibility and resistance to co-amoxiclav-induced liver injury. J Hepatol. 2010;53(6):1049–53.

    Article  CAS  PubMed  Google Scholar 

  16. El Sherrif Y, Potts JR, Howard MR, Barnardo A, Cairns S, Knisely AS, et al. Hepatotoxicity from anabolic androgenic steroids marketed as dietary supplements: contribution from ATP8B1/ABCB11 mutations? Liver Int. 2013;33(8):1266–70.

    Article  PubMed  Google Scholar 

  17. Fontana RJ, Hayashi PH, Barnhart H, Kleiner DE, Reddy KR, Chalasani N, et al. Persistent liver biochemistry abnormalities are more common in older patients and those with cholestatic drug induced liver injury. Am J Gastroenterol. 2015;110(10):1450–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Geier A, Wagner M, Dietrich CG, Trauner M. Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration. Biochim Biophys Acta. 2007;2007:283–308.

    Article  Google Scholar 

  19. Hautekeete ML, Horsmans Y, Van Waeyenberge C, Demanet C, Henrion J, Verbist L, et al. HLA association of amoxicillin-clavulanate-induced hepatitis. Gastroenterology. 1999;117:1181–6.

    Article  CAS  PubMed  Google Scholar 

  20. Hirata K, Takagi H, Yamamoto M, Matsumoto T, Nishiya T, Mori K, et al. Ticlopidine-induced hepatotoxicity is associated with specific human leukocyte antigen genomic subtypes in Japanese patients: a preliminary case-control study. Pharmacogenomics J. 2008;8:29–33.

    Article  CAS  PubMed  Google Scholar 

  21. Illing PT, Vivian JP, Dudek NL, Kostenko L, Chen Z, Bharadwaj M, et al. Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature. 2012;486:554–8.

    CAS  PubMed  Google Scholar 

  22. Kagawa T, Hirose S, Arase Y, Oka A, Anzai K, Tsuruya K, et al. No contribution of the ABCB11 p.444A polymorphism in Japanese patients with drug-induced cholestasis. Drug Metab Dispos. 2015;43:691–7.

    Article  CAS  PubMed  Google Scholar 

  23. Kim SH, Saide K, Farrell J, Faulkner I, Tailor A, Ogese M, et al. Characterization of amoxicillin- and clavulanic acid-specific T cells in patients with amoxicillin-clavulanate-induced liver injury. Hepatology. 2015;62:887–99.

    Article  CAS  PubMed  Google Scholar 

  24. Lang C, Meier Y, Stieger B, Beuers U, Lang T, Kerb R, et al. Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury. Pharmacogenet Genomics. 2007;17(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  25. Li F, Lu J, Cheng J, Wang L, Matsubara T, Csanaky IL, et al. Human PXR modulates hepatotoxicity associated with rifampicin and isoniazid co–therapy. Nat Med. 2013;19(4):418–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lucena MI, Molokhia M, Shen Y, Urban TJ, Aithal GP, Andrade RJ, et al. Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles. Gastroenterology. 2011;141:338–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mehta NKE. The Hla complex in biology and medicine: a resource book. New Delhi: Jaypee Brothers Medical Publishers Ltd; 2010.

    Google Scholar 

  28. Monshi MM, Faulkner L, Gibson A, Jenkins RE, Farrell J, Earnshaw CJ, et al. Human leukocyte antigen (HLA)-B*57:01-restricted activation of drug-specific T cells provides the immunological basis for flucloxacillin-induced liver injury. Hepatology. 2013;57:727–39.

    Article  CAS  PubMed  Google Scholar 

  29. Noe J, Kullak-Ublick GA, Jochum W, Stieger B, Kerb R, Haberl M, et al. Impaired expression and function of the bile salt export pump due to three novel ABCB11 mutations in intrahepatic cholestasis. J Hepatol. 2005;43:536–43.

    Article  CAS  PubMed  Google Scholar 

  30. O’Donohue J, Oien KA, Donaldson P, Underhill J, Clare M, Macsween RM, et al. Co-amoxiclav jaundice: clinical and histological features and HLA class II association. Gut. 2000;47:717–20.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pauli-Magnus C, Meier PJ, Stieger B. Genetic determinants of drug-induced cholestasis and intrahepatic cholestasis of pregnancy. Semin Liver Dis. 2010;30(2):147–59.

    Article  CAS  PubMed  Google Scholar 

  32. Phillips MJ, Oda M, Funatsu K. Evidence for microfilament involvement in norethandrolone-induced intrahepatic cholestasis. Am J Pathol. 1978;93(3):729–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ros JE, Libbrecht L, Geuken M, Jansen PL, Roskams TA. High expression of MDR1, MRP1, and MRP3 in the hepatic progenitor cell compartment and hepatocytes in severe human liver disease. J Pathol. 2003;200:553–60.

    Article  CAS  PubMed  Google Scholar 

  34. Schachter D. Fluidity and function of hepatocyte plasma membranes. Hepatology. 1984;4(1):140–51.

    Article  CAS  PubMed  Google Scholar 

  35. Schwarze C, Schmitz V, Fischer HP, Sauerbruch T, Spengler U. Vanishing bile duct syndrome associated with elevated pancreatic enzymes after short-term administration of amoxicillin. Eur J Gastroenterol Hepatol. 2002;14:1275–7.

    Article  PubMed  Google Scholar 

  36. Stevens JL, Baker TK. The future of drug safety testing: expanding the view and narrowing the focus. Drug Discov Today. 2009;14(3–4):162–7.

    Article  PubMed  Google Scholar 

  37. Stieger B, Fattinger K, Madon J, Kullak-Ublick GA, Meier PJ. Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology. 2000;118(2):422–30.

    Article  CAS  PubMed  Google Scholar 

  38. Ulzurrun E, Stephens C, Crespo E, Ruiz-Cabello F, Ruiz-Nunez J, Saenz-Lopez P, et al. Role of chemical structures and the 1331 T>C bile salt export pump polymorphism in idiosyncratic drug-induced liver injury. Liver Int. 2013;33:1378–85.

    Article  CAS  PubMed  Google Scholar 

  39. Ulzurrun E, Stephens C, Ruiz-Cabello F, Robles-Diaz M, Saenz-Lopez P, Hallal H, et al. Selected ABCB1, ABCB4 and ABCC2 polymorphisms do not enhance the risk of drug-induced hepatotoxicity in a Spanish cohort. PLoS One. 2014;9:e94675.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Urban TJ, Shen Y, Stolz A, Chalasani N, Fontana RJ, Rochon J, et al. Limited contribution of common genetic variants to risk for liver injury due to a variety of drugs. Pharmacogenet Genomics. 2012;22:784–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Watson RG, Olomu A, Clements D, Waring RH, Mitchell S, Elias E. A proposed mechanism for chlorpromazine jaundice – defective hepatic sulphoxidation combined with rapid hydroxylation. J Hepatol. 1988;7(1):72–8.

    Article  CAS  PubMed  Google Scholar 

  42. Nicoletti P*, Aithal GP, Bjronsson ES, Andrade RJ, Sawle A, Arrese M, et al. Association of liver injury from specific drugs, or groups of drugs, with polymorphisms in HLA and other genes in a genome-wide association study. Gastroenterology. 2016:pii: S0016-5085(16)35530–5. doi: 10.1053/j.gastro.2016.12.016. [Epub ahead of print]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guruprasad P. Aithal MBBS, MD, FRCP, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Aithal, G.P., Daly, A.K. (2017). Drug-Induced Cholestasis: Mechanisms and Importance. In: Hirschfield, G., Adams, D., Liaskou, E. (eds) Biliary Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-50168-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50168-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50166-6

  • Online ISBN: 978-3-319-50168-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics