Skip to main content

Sol-Gel Processed Cathode Materials for Lithium-Ion Batteries

  • Chapter
  • First Online:
Sol-Gel Materials for Energy, Environment and Electronic Applications

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

In recent years, cathode materials prepared through sol-gel method exhibited improved electrochemical performance in rechargeable Li-ion batteries. Undoubtedly, this promising low-temperature synthetic method for high surface area materials offers homogeneity, and particle size control for achieving desired physical and chemical properties. In addition, several modifications of the sol-gel method using chelating and polymerizing agents enabled further control of cathode material porosity and morphology. Moreover, major drawbacks of current generation Li-ion battery cathodes such as transition metal ion leaching, low electronic conductivity, etc. were efficiently mitigated by sol-gel synthesis of doped cathodes, their composite formation with metal nanoparticles/fast Li-ion conductor, and uniform carbon/metal oxide coating. Commercialization of several Li-ion battery cathodes is also enabled by modified sol-gel methods that allow scalable material synthesis. In summary, tailored synthesis of a wide range of cathode materials through sol-gel process facilitated the development of high-performance secondary Li-ion batteries for advanced electrochemical energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Etacheri, V., Marom, R., Elazari, R., Salitra, G., Aurbach, D.: Challenges in the development of advanced Li-Ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011)

    Article  Google Scholar 

  2. Lu, L., Yang, H., Burnett, J.: Investigation on wind potential on Hong Kong islands—an analysis of wind power and wind turbine characteristics. Renew. Energy 27, 1–12 (2002)

    Google Scholar 

  3. Nazeeruddin, M.K., Baranoff, E., Graetzel, M.: Dye-sensitized solar cells: a brief overview. Sol. Energy 85, 1172–1178 (2011)

    Article  Google Scholar 

  4. Goodenough, J.B., Kim, Y.: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010)

    Article  Google Scholar 

  5. Marom, R., Amalraj, S.F., Leifer, N., Jacob, D., Aurbach, D.: A review of advanced and practical lithium battery materials. J. Mater. Chem. 21, 9938–9954 (2011)

    Article  Google Scholar 

  6. Goodenough, J.B., Kim, Y.: Challenges for rechargeable batteries. J. Power Sources 196, 6688–6694 (2011)

    Article  Google Scholar 

  7. Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004)

    Article  Google Scholar 

  8. Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652–657 (2008)

    Article  Google Scholar 

  9. Etacheri, V., Seisenbaeva, G.A., Caruthers, J., Daniel, G., Nedelec, J.M., Kessler, V.G., Pol, V.G.: Ordered network of interconnected SnO2 nanoparticles for excellent lithium-ion storage. Adv. Energy Mater. 5, 1401289–1401297 (2015)

    Article  Google Scholar 

  10. Kang, B., Ceder, G.: Battery materials for ultrafast charging and discharging. Nature 458, 190–193 (2009)

    Article  Google Scholar 

  11. Bruce, P.G., Scrosati, B., Tarascon, J.M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008)

    Article  Google Scholar 

  12. Manthiram, A.: Materials challenges and opportunities of lithium ion batteries. J. Phys. Chem. Lett. 2, 176–184 (2011)

    Article  Google Scholar 

  13. Etacheri, V., Yourey, J.E., Bartlett, B.M.: Chemically bonded TiO2-bronze nanosheet/reduced graphene oxide hybrid for high-power lithium ion batteries. ACS Nano 8, 1491–1499 (2014)

    Article  Google Scholar 

  14. Pierre, A.C.: Introduction to sol gel processing. Kluwer Academic Press, Boston (1990)

    Google Scholar 

  15. Yoldas, A.E.: Alumina sol preparation from alkoxides. Am. Ceramic. Soc. Bull. 54, 289–290 (1975)

    Google Scholar 

  16. Xian-Jun, Z., Hong-Hao, C., Hui, Z., Han-Xing, L., Dai-Ling, Y., Yun-Hong, Z.: Synthesis and characteristics of LiNi0.85Co0.15O2 cathode materials by particulate sol-gel method for lithium ion batteries. Chin. J. Chem. 23, 491–495 (2005)

    Article  Google Scholar 

  17. Kandhasamy, S., Pandey, A., Minakshi, M.: Polyvinylpyrrolidone assisted sol-gel route LiCo1/3Mn1/3Ni1/3PO4 composite cathode for aqueous rechargeable battery. Electrochim. Acta 60, 170–176 (2012)

    Article  Google Scholar 

  18. Zhang, H., Reller, A.: Nanocrystalline iron-doped mesoporous titania and its phase transition. J. Mater. Chem. 11, 2537–2541 (2001)

    Article  Google Scholar 

  19. Stone, V., Davis, R.: Synthesis characterization and photocatalytic activity of titania and niobia mesoporous molecular sieves. Chem. Mater. 10, 1468–1474 (1998)

    Article  Google Scholar 

  20. Antonelli, D., Ying, J.: Synthesis of a stable hexagonally packed mesoporous niobium oxide molecular sieve through a novel ligand assisted templating mechanism. Angew. Chem. Int. Ed. 34, 2014–2017 (1995)

    Article  Google Scholar 

  21. Liu, H., Wu, Y.P., Rahm, E., Holze, R., Wu, H.Q.: Cathode materials for lithium ion batteries prepared by sol-gel methods. J. Solid State Electrochem. 8, 450–466 (2004)

    Article  Google Scholar 

  22. Sato, S., Oimatsu, S., Takahashi, R., Sodesawa, T., Nozaki, F.: Pore size regulation of TiO2 by use of a complex of titanium tetraisopropoxide and stearic acid. Chem. Commun. 22,19–2220 (1997)

    Google Scholar 

  23. Putnam, R., Nakagawa, N., McGrath, K., Yao, N., Aksay, I., Gruner, S.: Titanium dioxide-surfactant mesophases and Ti-TMS1. Chem. Mater. 9, 2690–2693 (1997)

    Article  Google Scholar 

  24. Thieme, M., Schuth, F.: Preparation of a mesoporous high surface area titanium oxo phosphate via a non-ionic surfactant route. Microporous Mesoporous Mater. 27, 193–200 (1999)

    Article  Google Scholar 

  25. Cabrera, S., Haskouri, J.E., Beltrán-Porter, A., Beltrán-Porter, D., Marcos, M., Amorós, P.: Enhanced surface area in thermally stable pure mesoporous TiO2. Solid State Sci. 2, 513–518 (2000)

    Article  Google Scholar 

  26. Singhal, B., Porwal, A., Sharma, A., Ameta, R., Ameta, S.: Photocatalytic degradation of cetylpyridinium chloride over titanium dioxide powder. J. Photochem. Photobiol. A 108, 85–88 (1997)

    Article  Google Scholar 

  27. Cassiers, K., Linssen, T., Mathieu, M., Bai, Y., Zhu, H., Cool, P.: Surfactant-directed synthesis of mesoporous titania with nanocrystalline anatase walls and remarkable thermal stability. J. Phys. Chem. B 108, 3713–3721 (2004)

    Article  Google Scholar 

  28. Thoms, H., Epple, M., Fröba, M., Wong, J., Reller, A.: Metal diolates: useful precursors for tailor-made oxides prepared at low temperatures. J. Mater. Chem. 8, 1447–1451 (1998)

    Article  Google Scholar 

  29. Saadoun, L., Ayllón, J., Jiménez-Becerril, J., Peral, J., Domenech, X., Rodríguez-Clemente, R.: 1, 2 Diolates of titanium as stable precursors for the preparation of photoactive high surface area titania. Appl. Catal. B 21, 269–277 (1999)

    Article  Google Scholar 

  30. Zheng, J., Qiu, K., Wei, Y.: Sol-gel synthesis of mesoporous titania using nonsurfactant organic compounds as templates. Mol. Cryst. Liq. Cryst. 354, 183–194 (2000)

    Article  Google Scholar 

  31. Wang, C., Li, Q., Wang, R.: Synthesis and characterization of mesoporous iron-doped TiO2. J. Mater. Chem. 39, 1899–1901 (2004)

    Google Scholar 

  32. Wang, C., Xi, H., Wang, R.: Synthesis of mesoporous Ce-doped TiO2 with high thermal stability. Chem. Lett. 33, 20–21 (2004)

    Article  Google Scholar 

  33. Kingery, H., Bown, K., Uhimann, D.R.: Introduction to Ceramics. Wiley, Newyork (1996)

    Google Scholar 

  34. Segal, A.L.: Sol-gel processing: routes to oxide ceramics using colloidal dispersions of hydrous oxides and alkoxide intermediates. J. Non. Cryst. Solids 63, 183–191 (1984)

    Article  Google Scholar 

  35. Nohma, T., Kurokawa, H., Uehara, M., Takahashi, M., Nishio, K., Saito, T.: Electrochemical characteristics of LiNiO2 and LiCoO2 as a positive material for lithium secondary batteries. J. Power Sources 54, 522–524 (1995)

    Article  Google Scholar 

  36. Capitaine, F., Gravereau, P., Delmas, C.: A new variety of LiMnO2 with a layered structure. Solid State Ionics 89, 197–202 (1996)

    Article  Google Scholar 

  37. Thackeray, M.M.: Spinel electrodes for lithium batteries. J. Am. Ceram. Soc. 82, 3347–3354 (1999)

    Article  Google Scholar 

  38. Mitzushima, K., Jones, P.C., Wiseman, P.J., Goodenough, J.B.: LixCoO2 (0 < x< −1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–799 (1980)

    Article  Google Scholar 

  39. Ozawa, K.: Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ionics 69, 212–221 (1994)

    Article  Google Scholar 

  40. Alcantara, R., Lavela, P., Tirado, J.L., Stoyanova, R., Zhecheva, E.: Structure and electrochemical properties of boron-doped LiCoO2. J. Solid State Chem. 134, 265–273 (1997)

    Article  Google Scholar 

  41. Kim, Y.J., Cho, J., Kim, T.J., Parka, B.: Suppression of cobalt dissolution from the LiCoO2 cathodes with various metal-oxide coatings. J. Electrochem. Soc. 150, A1723–A1725 (2003)

    Article  Google Scholar 

  42. Amatucci, G.G., Tarascon, J.M., Klein, L.C.: Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries. Solid State Ionics 83, 167–173 (1996)

    Article  Google Scholar 

  43. Dokko, K., Mohamedi, M., Fujita, Y., Itoh, T., Nishizawa, M., Umeda, M., Uchida, I.: Kinetic characterization of single particles of LiCoO2 by AC impedance and potential step methods. J. Electrochem. Soc. 148, A422–A426 (2001)

    Article  Google Scholar 

  44. Ménetriér, M., Saudoune, I., Levasseur, S., Delmas, C.: The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li NMR study. J. Mater. Chem. 9, 1135–1140 (1999)

    Article  Google Scholar 

  45. Molenda, J., Stoklosa, A., Bak, T.: Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties. Solid State Ionics 53, 53–58 (1989)

    Article  Google Scholar 

  46. Shibuya, M., Nishina, T., Matsue, T., Uchida, I.: In situ conductivity measurements of LiCoO2 film during lithium insertion/extraction by using interdigitated microarray electrodes. J. Electrochem. Soc. 143, 3157–3160 (1996)

    Article  Google Scholar 

  47. Chen, Z., Dahn, J.R.: Effect of a ZrO2 coating on the structure and electrochemistry of LixCoO2 when cycled to 4.5 V. Electrochem. Solid-State Lett. 5, A213–A216 (2002)

    Article  Google Scholar 

  48. Cho, J., Kim, Y.J., Kim, T.J., Park, B.: Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem. Mater. 12, 3788–3791 (2000)

    Article  Google Scholar 

  49. Cho, J., Kim, Y.J., Kim, T.J., Park, B.: LiCoO2 cathode material that does not show a phase transition from hexagonal to monoclinic phase. J. Electrochem. Soc. 148, A1110–A1115 (2001)

    Article  Google Scholar 

  50. Nobili, F., Croce, F., Tossici, R., Meschini, I., Reale, P., Marassi, R.: Sol-gel synthesis and electrochemical characterization of Mg-/Zr-doped LiCoO2 cathodes for Li-ion batteries. J. Power Sources 197, 276–284 (2012)

    Article  Google Scholar 

  51. Jamnik, J., Daminko, R., Erjavec, B., Remskar, M., Pintar, A., Gaberscek, M.: Stabilizers of particle size and morphology: a road towards high-rate performance insertion materials. Adv. Mater. 21, 2715–2719 (2009)

    Article  Google Scholar 

  52. Hu, Y.S., Guo, Y.G., Dominko, R., Gaberscek, M., Jamnik, J., Maier, J.: Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect. Adv. Mater. 19, 1963–1966 (2007)

    Article  Google Scholar 

  53. Mladenov, M., Stoyanova, R., Zhecheva, E., Vassilev, S.: Effect of Mg doping and MgO-surface modification on the cycling stability of LiCoO2 electrodes. Electrochem. Commun. 3, 410–416 (2001)

    Article  Google Scholar 

  54. Thirunakaran, R., Kalaiselvi, N., Periasamy, P., Renganathan, N.G.: Mg substituted LiCoO2 for reversible lithium intercalation. Ionics 9, 388–394 (2003)

    Article  Google Scholar 

  55. Levasseur, S., Ménétrier, M., Delmas, C.: On the LixCo1−yMgyO2 system upon deintercalation: electrochemical, electronic properties and 7Li MAS NMR studies. J. Power Sources 112, 419–427 (2002)

    Article  Google Scholar 

  56. Julien, C., Camacho-Lopez, M.A., Mohan, T., Chitra, S., Kalyani, P., Gopukumar, S.: Combustion synthesis and characterization of substituted lithium cobalt oxides in lithium batteries. Solid State Ionics 135, 241–248 (2000)

    Article  Google Scholar 

  57. Ganesan, M.: Studies on the effect of titanium addition on LiCoO2. Ionics 15, 609–614 (2009)

    Article  Google Scholar 

  58. Kim, H.S., Ko, T.K., Na, B.K., Cho, W.I., Chao, B.W.: Electrochemical properties of LiMxCo1−xO2 [M=Mg, Zr] prepared by sol-gel process. J. Power Sources 138, 232–239 (2004)

    Article  Google Scholar 

  59. Needham, S.A., Wang, G.X., Liu, H.K., Drodz, V.A., Liu, R.S.: Synthesis and electrochemical performance of doped LiCoO2 materials. J. Power Sources 174, 828–831 (2007)

    Article  Google Scholar 

  60. Bang, H.J., Park, B.C., Sun, Y.K.: Synthesis and electrochemical properties of Li[Ni0.45Co0.1Mn0.45−xZrx]O2 (x = 0, 0.02) via co-precipitation method. J. Power Sources 174, 565–568 (2007)

    Article  Google Scholar 

  61. Oh, S.H., Lee, S.M., Cho, W.I., Cho, B.W.: Electrochemical characterization of zirconium-doped LiNi0.8Co0.2O2 cathode materials and investigations on deterioration mechanism. Electrochim. Acta 51, 3637–3644 (2006)

    Article  Google Scholar 

  62. Cho, J., Kim, Y., Kim, B., Lee, J., Park, B.: A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AlPO4 nanoparticles. Angew. Chem. Int. Ed. 42, 1618–1621 (2003)

    Article  Google Scholar 

  63. Lu, Y., Mansour, A.N., Yabuuchi, N., Shao-Horn, Y.: Probing the origin of enhanced stability of AlPO4 nanoparticle coated LiCoO2 during cycling to high voltages: combined XRD and XPS studies. Chem. Mater. 21, 4408–4424 (2009)

    Article  Google Scholar 

  64. Barker, J., Saidi, M.Y., Gover, R.K.B., Burns, P., Bryan, A.: The effect of Al substitution on the lithium insertion properties of lithium vanadium fluorophosphate, LiVPO4F. J. Power Sources 174, 927–931 (2007)

    Article  Google Scholar 

  65. Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B.: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997)

    Article  Google Scholar 

  66. Gao, M., Liu, N., Li, Z., Wang, W., Li, C., Zhang, H., Chen, Y., Yu, Z., Huang, Y.: A gelatin-based sol-gel procedure to synthesize the LiFePO4/C nanocomposite for lithium ion batteries. Solid State Ionics 258, 8–12 (2014)

    Article  Google Scholar 

  67. Gong, Z., Yang, Y.: Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ. Sci. 4, 3223–3242 (2011)

    Article  Google Scholar 

  68. Gover, R.K.B., Bryan, A., Burns, P., Barker, J.: The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3. Solid State Ionics 177, 1495–1500 (2006)

    Article  Google Scholar 

  69. Li, Y., Zhou, Z., Ren, M., Gao, X., Yan, J.: Electrochemical performance of nanocrystalline Li3V2(PO4)3/carbon composite material synthesized by a novel sol-gel method. Electrochim. Acta 51, 6498–6502 (2006)

    Article  Google Scholar 

  70. Chung, S.Y., Bloking, J.T., Chiang, Y.M.: Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 2, 123–128 (2002)

    Article  Google Scholar 

  71. Wang, Y., Wang, Y., Hosono, E., Wang, K., Zhou, H.: The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angew. Chem. Int. Ed. 47, 7461–7465 (2008)

    Article  Google Scholar 

  72. Lai, C., Xu, Q., Ge, H., Zhou, G., Xie, J.: Improved electrochemical performance of LiFePO4/C for lithium-ion batteries with two kinds of carbon sources. Solid State Ionics 179, 1736–1739 (2008)

    Article  Google Scholar 

  73. Wang, J., Sun, X.: Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ. Sci. 5, 5163–5185 (2012)

    Article  Google Scholar 

  74. Beninati, S., Damen, L., Mastragostino, M.: Fast sol-gel synthesis of LiFePO4/C for high power lithium-ion batteries for hybrid electric vehicle application. J. Power Sources 194, 1094–1098 (2009)

    Article  Google Scholar 

  75. Shim, J., Striebel, K.A.: Cycling performance of low-cost lithium ion batteries with natural graphite and LiFePO4. J. Power Sources 119–121, 955–958 (2003)

    Article  Google Scholar 

  76. Striebel, K.A., Guerfi, A., Shim, J., Armand, M., Gauthier, M., Zaghib, K.: LiFePO4/gel/natural graphite cells for the BATT program. J. Power Sources 119–121, 951–954 (2003)

    Article  Google Scholar 

  77. Huang, H., Yin, S.C., Nazar, L.F.: Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem. Solid-State Lett. 4, A170–A172 (2001)

    Article  Google Scholar 

  78. Yang, S., Song, Y., Zavalij, P.Y., Whittingham, M.S.: Reactivity, stability and electrochemical behavior of lithium iron phosphates. Electrochem. Commun. 4, 239–244 (2002)

    Google Scholar 

  79. Choi, D., Kumta, P.N.: Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries. J. Power Sources 163, 1064–1069 (2007)

    Article  Google Scholar 

  80. Yamada, A., Chung, S.C., Hinokuma, K.: Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 148, A224–A229 (2001)

    Article  Google Scholar 

  81. Chung, S.Y., Chiang, Y.M.: Microscale measurements of the electrical conductivity of doped LiFePO4. Electrochem. Solid-State Lett. 6, A278–A281 (2003)

    Article  Google Scholar 

  82. Xie, H., Zhou, Z.T.: Physical and electrochemical properties of mix-doped lithium iron phosphate as cathode material for lithium ion battery. Electrochim. Acta 51, 2063–2068 (2006)

    Article  Google Scholar 

  83. Gao, Y., Li, L., Peng, H., Wei, Z.: Surfactant-assisted sol-gel synthesis of nanostructured ruthenium-doped lithium iron phosphate as a cathode for lithium-ion batteries. ChemElectroChem 1, 2146–2152 (2014)

    Article  Google Scholar 

  84. Vujkovic, M., Jugovic, D., Mitric, M., Stojkovic, I., Cvjetićanin, N., Mentus, S.: The LiFe(1−x)VxPO4/C composite synthesized by gel-combustion method, with improved rate capability and cycle life in aerated aqueous solutions. Electrochim. Acta 109, 835–842 (2013)

    Article  Google Scholar 

  85. Shin, H.C., Park, S.B., Jang, H., Chung, K.Y., Cho, W.I., Kim, C.S., Cho, B.W.: Rate performance and structural change of Cr-doped LiFePO4/C during cycling. Electrochim. Acta 53, 7946–7950 (2008)

    Article  Google Scholar 

  86. Gao, H.Y., Jiao, L.F., Yang, J.Q., Qi, Z., Wang, Y.J., Yuan, H.T.: High rate capability of Co-doped LiFePO4/C. Electrochim. Acta 97, 143–149 (2013)

    Article  Google Scholar 

  87. Herle, P.S., Ellis, B., Coombs, N., Nazar, L.F.: Nano-network electronic conduction in iron and nickel olivine phosphates. Nat. Mater. 3, 147–152 (2004)

    Article  Google Scholar 

  88. Ravet, N., Besner, S., Simoneau, M., Vallée, A., Armand, M.: Hydro-Québec, Canadian Patent 2, 270, 771

    Google Scholar 

  89. Ravet, N., Goodenough, J.B., Besner, S., Simoneau, M., Hovington, P., Armand, M.: The 196th Electrochemical Society and the Electrochemical Society of Japan Meeting Abstracts (Abstract 127), pp. 99–102 (1999)

    Google Scholar 

  90. Chen, G., Song, X., Richardson, T.J.: Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem. Solid-State Lett. 9, A295–A298 (2006)

    Article  Google Scholar 

  91. Srinivasan, V., Newman, J.: Discharge model for the lithium iron-phosphate electrode. J. Electrochem. Soc. 151, A1517–A1529 (2004)

    Article  Google Scholar 

  92. Delacourt, C., Poizot, P., Levasseur, S., Masquelier, C.: Size effects on carbon-free LiFePO4 powders. Electrochem. Solid-State Lett. 9, A352–A355 (2006)

    Article  Google Scholar 

  93. Delacourt, C., Poizot, P., Morcrette, M., Tarascon, J.M., Masquelier, C.: One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders. Chem. Mater. 16, 93–99 (2004)

    Article  Google Scholar 

  94. Dominko, R., Bele, M., Gaberscek, M., Remskar, M., Hanzel, D., Goupil, J.M., Pejovnik, S., Jamnik, J.: Porous olivine composites synthesized by sol-gel technique. J. Power Sources 153, 274–280 (2006)

    Article  Google Scholar 

  95. Yang, J.S., Xu, J.J.: Synthesis and characterization of carbon-coated lithium transition metal phosphates LiMPO4 (M = Fe, Mn Co, Ni) prepared via a nonaqueous sol-gel route. J. Electrochem. Soc. 153, A716–A723 (2006)

    Article  Google Scholar 

  96. Sanchez, M.A.E., Brito, G.E.S., Fantini, M.C.A., Goya, G.F., Matos, J.R.: Synthesis and characterization of LiFePO4 prepared by sol-gel technique. Solid State Ionics 177, 497–500 (2006)

    Article  Google Scholar 

  97. Kim, D.H., Kim, J.: Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem. Solid-State Lett. 9, A439–A442 (2006)

    Article  Google Scholar 

  98. Etacheri, V., Wang, C., O’Connell, M.J., Chan, C.K., Pol, V.G.: Porous carbon sphere anodes for enhanced lithium-ion storage. J. Mater. Chem. A 3, 9861–9868 (2015)

    Article  Google Scholar 

  99. Etacheri, V., Kuo, Y., Ven, A.V., Bartlett, B.M.: Mesoporous TiO2–B microflowers composed of (110) facet-exposed nanosheets for fast reversible lithium-ion storage. J. Mater. Chem. A 1, 12028–12032 (2013)

    Article  Google Scholar 

  100. Liu, H., Bi, Z., Sun, X., Unocic, R., Paranthaman, P., Dai, S., Brown, G.: Mesoporous TiO2–B microspheres with superior rate performance for lithium ion batteries. Adv. Mater. 23, 3450–3454 (2011)

    Article  Google Scholar 

  101. Dylla, A.G., Lee, J.A., Stevenson, K.J.: Influence of mesoporosity on lithium-ion storage capacity and rate performance of nanostructured TiO2(B). Langmuir 28, 2897–2903 (2012)

    Article  Google Scholar 

  102. Qiu, H., Zhu, K., Li, H., Li, T., Zhang, T., Yue, H., Wei, Y., Du, F., Wang, C., Chen, G., Zhang, D.: Mesoporous Li2FeSiO4@ordered mesoporous carbon composites cathode material for lithium-ion batteries. Carbon 87, 365–373 (2015)

    Article  Google Scholar 

  103. Kim, S.J., Lee, Y.W., Hwang, B.M., Kim, S.B., Kim, W.S., Cao, G., Park, K.W.: Mesoporous composite cathode materials prepared from inverse micelle structures for high performance lithium ion batteries. RSC Adv. 4, 11598–11604 (2014)

    Article  Google Scholar 

  104. Jung, H., Shin, J., Chae, C., Lee, J.K., Kim, J.: FeF3/ordered mesoporous carbon (OMC) nanocomposites for lithium ion batteries with enhanced electrochemical performance. J. Phys. Chem. C 117, 14939–14946 (2013)

    Article  Google Scholar 

  105. Wang, G., Liu, H., Liu, J., Qiao, S., Lu, G.M., Munroe, P., Ahn, H.: Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance. Adv. Mater. 22, 4944–4948 (2010)

    Article  Google Scholar 

  106. Gummow, R.J., He, Y.: Mesoporous manganese-deficient lithium manganese silicate cathodes for lithium-ion batteries. RSC Adv. 4, 11580–11584 (2014)

    Article  Google Scholar 

  107. Franger, S., Cras, F.L., Burbon, C., Rouault, H.: LiFePO4 synthesis routes for enhanced electrochemical performance. Electrochem. Solid-State Lett. 5, A231–A233 (2002)

    Article  Google Scholar 

  108. Singhal, A., Skandan, G., Amatucci, G., Badway, F., Ye, N., Manthiram, A., Ye, H., Xu, J.J.: Nanostructured electrodes for next generation rechargeable electrochemical devices. J. Power Sources 129, 38–44 (2004)

    Article  Google Scholar 

  109. Panero, S., Scrosati, B., Wachtler, M., Croce, F.: Nanotechnology for the progress of lithium batteries R&D. J. Power Sources 129, 90–95 (2004)

    Article  Google Scholar 

  110. Yamada, A., Chung, S.C.: Crystal chemistry of the Olivine-type Li ( MnyFe1 − y)PO4 and (MnyFe1 − y)PO4 as possible 4 V cathode materials for lithium batteries. J. Electrochem. Soc. 148, A960–A967 (2001)

    Article  Google Scholar 

  111. Dominko, R., Bele, M., Gaberscek, M., Remskar, M., Hanzel, D., Pejovnik, S., Jamnik, J.: Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites. J. Electrochem. Soc. 152, A607–A610 (2005)

    Article  Google Scholar 

  112. Huang, G., Li, W., Sun, H., Wang, J., Zhang, J., Jiang, H., Zhai, F.: Polyvinylpyrrolidone (PVP) assisted synthesized nano-LiFePO4/C composite with enhanced low temperature performance. Electrochim. Acta 97, 92–98 (2013)

    Article  Google Scholar 

  113. Cao, Y., Duan, J., Hu, G., Jiang, F., Peng, Z., Du, K., Guo, H.: Synthesis and electrochemical performance of nanostructured LiMnPO4/C composites as lithium-ion battery cathode by a precipitation technique. Electrochim. Acta 98, 183–189 (2013)

    Article  Google Scholar 

  114. Huang, Y., Ren, H., Peng, Z., Zhou, Y.: Synthesis of LiFePO4/carbon composite from nano-FePO4 by a novel stearic acid assisted rheological phase method. Electrochim. Acta 55, 311–315 (2009)

    Article  Google Scholar 

  115. Hamamoto, K., Fukushima, M., Mamiya, M., Yoshizawa, Y., Akimoto, J., Suzuki, T., Fujishiro, Y.: Morphology control and electrochemical properties of LiFePO4/C composite cathode for lithium ion batteries. Solid State Ionics 225, 560–563 (2012)

    Article  Google Scholar 

  116. Liu, R., Zhang, H., Huang, Y., Wang, W., Li, Z., Yu, Z., Wang, A., Yuan, K.: In situ gelatin carbonation to prepare a binder-free LiFePO4 cathode for high-power lithium ion batteries. Electrochim. Acta 78, 563–568 (2012)

    Article  Google Scholar 

  117. Jeong, B., Kim, S.W., Bae, Y.H.: Thermosensitive sol-gel reversible hydrogels. Adv. Drug Delivery Rev. 64, 154–162 (2012)

    Article  Google Scholar 

  118. Kim, J.K., Choi, J.W., Chauhan, G.S., Ahn, J.H., Hwang, G.C., Choi, J.B., Ahn, H.J.: Enhancement of electrochemical performance of lithium iron phosphate by controlled sol-gel synthesis. Electrochim. Acta 53, 8258–8264 (2008)

    Article  Google Scholar 

  119. Djabourov, M., Leblond, J., Papon, P.: Gelation of aqueous gelatin solutions. I. Structural investigation. J. Phys. France 49, 319–332 (1988)

    Article  Google Scholar 

  120. Joly-Duhamel, C., Hellio, D., Ajdari, A., Djabourov, M.: All gelatin networks: 2. The master curve for elasticity. Langmuir 18, 7158–7166 (2002)

    Article  Google Scholar 

  121. Minakshi, M., Singh, P., Sharma, N., Blackford, M., Ionescu, M.: Lithium extraction–insertion from/into LiCoPO4 in aqueous batteries. Ind. Eng. Chem. Res. 50, 1899–1905 (2011)

    Article  Google Scholar 

  122. Minakshi, M., Singh, P., Appadoo, D., Martin, D.E.: Synthesis and characterization of olivine LiNiPO4 for aqueous rechargeable battery. Electrochim. Acta 56, 4356–4360 (2011)

    Article  Google Scholar 

  123. Minakshi, M., Singh, P., Thurgate, S., Prince, K.: Electrochemical behavior of Olivine-type LiMnPO4 in aqueous solutions. Electrochem. Solid State Lett. 9, A471–A474 (2006)

    Article  Google Scholar 

  124. Minakshi, M., Singh, P., Thurgate, S., Prince, K.: Redox behavior and surface characterization of LiFePO4 in lithium hydroxide electrolyte. J. Power Sources 158, 646–649 (2006)

    Article  Google Scholar 

  125. Minakshi, M., Sharma, N., Ralph, D., Appadoo, D., Nallathamby, K.: Synthesis and characterization of Li(Co0.5Ni0.5)PO4 cathode for Li-Ion aqueous battery applications. Electrochem. Solid State Lett. 14, A86–A89 (2011)

    Google Scholar 

  126. Lee, J.M., Jun, Y.D., Kim, D.W., Lee, Y.H., Oh, S.G.: Effects of PVP on the formation of silver–polystyrene heterogeneous nanocomposite particles in novel preparation route involving polyol process: molecular weight and concentration of PVP. Mater. Chem. Phys. 114, 549–555 (2009)

    Article  Google Scholar 

  127. Bonet, F., Delmas, V., Grugeon, S., Urbina, R.H., Silvert, P.Y., Elhsissen, K.T.: Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol. Nanostruct. Mater. 11, 1277–1284 (1999)

    Article  Google Scholar 

  128. Du, Y.K., Yang, P., Mou, Z.G., Hua, N.P., Jiang, L.: Thermal decomposition behaviors of PVP coated on platinum nanoparticles. J. Appl. Polym. Sci. 99, 23–26 (2006)

    Article  Google Scholar 

  129. Lim, S.H., Cho, J.: PVP-Assisted ZrO2 coating on LiMn2O4 spinel cathode nanoparticles prepared by MnO2 nanowire templates. Electrochem. Commun. 10, 1478–1481 (2008)

    Article  Google Scholar 

  130. Padhi, A.K., Nanjundaswamy, K.S., Masquelier, C., Goodenough, J.B.: Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation. J. Electrochem. Soc. 144, 2581–2586 (1997)

    Article  Google Scholar 

  131. Huang, H., Yin, S.C., Kerr, T., Taylor, N., Nazar, L.F.: Nanostructure composites: a high capacity, fast rate Li3V2(PO4)3/carbon cathode for rechargeable lithium batteries. Adv. Mater. 14, 1525–1528 (2002)

    Article  Google Scholar 

  132. Yin, S.C., Grondey, H., Strobel, P., Huang, H., Nazar, L.F.: Charge ordering in lithium vanadium phosphates: electrode materials for lithium-ion batteries. J. Am. Chem. Soc. 125, 326–327 (2003)

    Article  Google Scholar 

  133. Yin, S.C., Strobel, P.S., Grondey, H., Nazar, L.F.: Li2.5V2(PO4)3: a room-temperature analogue to the fast-ion conducting high-temperature phase of Li3V2(PO4)3. Chem. Mater. 16, 1456–1465 (2004)

    Article  Google Scholar 

  134. Rui, X.H., Jin, Y., Feng, X.Y., Zhang, L.C., Chen, C.H.: A comparative study on the low temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium ion batteries. J. Power Sources 196, 2109–2114 (2011)

    Article  Google Scholar 

  135. Tukamoto, H., West, A.R.: Electronic conductivity of LiCoO2 and its enhancement by magnesium doping. J. Electrochem. Soc. 144, 3164–3168 (1997)

    Article  Google Scholar 

  136. Wang, J.W., Liu, J., Yang, G.L., Zhang, X.F., Yan, X.D., Pan, X.M., Wang, R.S.: Electrochemical performance of Li3V2(PO4)3/C cathode material using a novel carbon source. Electrochim. Acta 54, 6451–6454 (2009)

    Article  Google Scholar 

  137. Rui, X.H., Li, C., Liu, J., Cheng, T., Chen, C.H.: Composites with high-rate capability prepared by a maltose-based sol-gel route. Electrochim. Acta 55, 6761–6767 (2010)

    Article  Google Scholar 

  138. Pan, A.Q., Liu, J., Zhang, J.G., Xu, W., Cao, G.Z., Nie, Z.M., Arey, B.W., Liang, S.Q.: Nanostructured Li3V2(PO4)3/carbon composite for high-rate lithium-ion batteries. Electrochem. Commun. 12, 1674–1677 (2010)

    Article  Google Scholar 

  139. Fu, P., Zhao, Y.M., Dong, Y.Z., An, X.N., Shen, G.P.: Synthesis of Li3V2(PO4)3 with high performance by optimized solid-state synthesis routine. J. Power Sources 162, 651–657 (2006)

    Article  Google Scholar 

  140. Zhu, X.J., Liu, Y.X., Geng, L.M., Chen, L.B.: Synthesis and performance of lithium vanadium phosphate as cathode materials for lithium ion batteries by a sol-gel method. J. Power Sources 184, 578–582 (2008)

    Article  Google Scholar 

  141. Yang, G., Liu, H.D., Ji, H.M., Chen, Z.Z., Jiang, X.F.: Temperature-controlled microwave solid-state synthesis of Li3V2(PO4)3/C as cathode materials for lithium batteries. J. Power Sources 195, 5374–5378 (2010)

    Article  Google Scholar 

  142. Qiao, Y.Q., Tu, J.P., Xiang, J.Y., Wang, X.L., Mai, Y.J., Zhang, D., Liu, W.L.: Effects of synthetic route on structure and electrochemical performance of Li3V2(PO4)3/C cathode materials. Electrochim. Acta 56, 4139–4145 (2011)

    Article  Google Scholar 

  143. Yuan, W., Yan, J., Tang, Z., Sha, O., Wang, J., Mao, W., Ma, L.: Synthesis of Li3V2(PO4)3 cathode material via a fast sol-gel method based on spontaneous chemical reactions. J. Power Sources 201, 301–306 (2012)

    Article  Google Scholar 

  144. Zheng, J.C., Li, X.H., Wang, Z.X., Li, J.H., Li, L.J., Wu, L., Guo, H.J.: Characteristics of xLiFePO4·y Li3V2(PO4)3 electrodes for lithium batteries. Ionics 15, 753–759 (2009)

    Article  Google Scholar 

  145. Zhong, S., Wu, L., Liu, J.: Sol-gel synthesis and electrochemical properties of 9LiFePO4·Li3V2(PO4)3/C composite cathode material for lithium ion batteries. Electrochim. Acta 74, 8–15 (2012)

    Article  Google Scholar 

  146. Zhang, L.L., Liang, G., Ignatov, A., Croft, M.C., Xiong, X.Q., Hung, I.M., Huang, Y.H., Hu, X.L., Zhang, W.X., Peng, Y.L.: Effect of vanadium incorporation on electrochemical performance of LiFePO4 for lithium-ion batteries. J. Phys. Chem. C 115, 13520–13527 (2011)

    Article  Google Scholar 

  147. Xiang, J.Y., Tu, J.P., Zhang, L., Wang, X.L., Zhou, Y., Qiao, Y.Q., Lu, Y.: Improved electrochemical performances of 9LiFePO4·Li3V2(PO4)/C composite prepared by a simple solid-state method. J. Power Sources 195, 8331–8335 (2010)

    Article  Google Scholar 

  148. Yang, M.R., Ke, W.H., Wu, S.H.: Improving electrochemical properties of lithium iron phosphate by addition of vanadium. J. Power Sources 165, 646–650 (2007)

    Article  Google Scholar 

  149. Wang, L., Li, Z., Xu, H., Zhang, K.: Studies of Li3V2(PO4)3 additives for the LiFePO4 based Li ion batteries. J. Phy. Chem. C 112, 308–312 (2008)

    Article  Google Scholar 

  150. Rui, X.H., Ding, N., Liu, J., Li, C., Chen, C.H.: Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim. Acta 55, 2384–2390 (2010)

    Article  Google Scholar 

  151. Pan, A., Liu, J., Zhang, J.G., Xu, W., Cao, G., Nie, Z., Arey, B.W., Liang, S.: Nano-structured Li3V2(PO4)3/carbon composite for high-rate lithium-ion batteries. Electrochem. Commun. 12, 1674–1677 (2010)

    Article  Google Scholar 

  152. Yang, G., Liu, H., Ji, H., Chen, Z., Jiang, X.: Microwave solid-state synthesis and electrochemical properties of carbon-free Li3V2(PO4)3 as cathode materials for lithium batteries. Electrochim. Acta 55, 2951–2957 (2010)

    Article  Google Scholar 

  153. Qiao, Y.Q., Wang, X.L., Zhou, Y., Xiang, J.Y., Zhang, D., Shi, S.J., Tu, J.P.: Electrochemical performance of carbon-coated Li3V2(PO4)3 cathode materials derived from polystyrene-based carbon-thermal reduction synthesis. Electrochem. Commun. 56, 510–516 (2010)

    Google Scholar 

  154. Ma, J., Li, B., Du, H., Xu, C., Kang, F.: The effect of vanadium on physicochemical and electrochemical performances of LiFePO4 cathode for lithium battery. J. Electrochem. Soc. 158, A26–A32 (2011)

    Article  Google Scholar 

  155. Sun, C.S., Zhou, Z., Xu, Z.G., Wang, D.G., Wei, J.P., Bian, X.K., Yan, J.: Improved high-rate charge/discharge performances of LiFePO4/C via V-doping. J. Power Sources 193, 841–845 (2009)

    Article  Google Scholar 

  156. Ren, M., Zhou, Z., Li, Y., Gao, X.P., Yan, J.: Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium ion batteries. J. Power Sources 162, 1357–1362 (2006)

    Article  Google Scholar 

  157. Zheng, J.C., Li, X.H., Wang, Z.X., Niu, S.S., Liu, D.R., Wu, L., Li, L.J., Li, J.H., Guo, H.J.: Novel synthesis of LiFePO4–Li3V2(PO4)3 composite cathode material by aqueous precipitation and lithiation. J. Power Sources 195, 2935–2938 (2010)

    Article  Google Scholar 

  158. Zhang, W.J.: Structure and performance of LiFePO4 cathode materials: a review. J. Power Sources 196, 2962–2970 (2011)

    Article  Google Scholar 

  159. Fey, G.T., Chen, Y.G., Kao, H.M.: Electrochemical properties of LiFePO4 prepared via ball-milling. J. Power Sources 189, 169–178 (2009)

    Article  Google Scholar 

  160. Gaberscek, M., Dominko, R., Jamnik, J.: Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes. Electrochem. Commun. 9, 2778–2783 (2007)

    Article  Google Scholar 

  161. Dompablo, M.E.A.Y.D., Amador, U., Tarascon, J.M.: A computational investigation on fluorinated-polyanionic compounds as positive electrode for lithium batteries. J. Power Sources 174, 1251–1257 (2007)

    Google Scholar 

  162. Barker, J., Saidi, M.Y., Swoyer, J.L.: Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4F. J. Electrochem. Soc. 150, A1394–A1398 (2003)

    Article  Google Scholar 

  163. Liu, J.Q., Zhong, S.K., Wu, L., Wan, K., Lu, F.: Electrochemical performance of LiVPO4F/C synthesized by different methods. Trans. Nonferrous Met. Soc. China 22, 157–161 (2012)

    Article  Google Scholar 

  164. Xiong, Z., Zhang, G., Xiong, J., Yang, X., Zhang, Y.: Modified sol-gel synthesis of nanosized LiVPO4F/C cathode material with mechanical blending assist. Mater. Lett. 111, 214–216 (2013)

    Article  Google Scholar 

  165. Qiao, X., Yang, J., Wang, Y., Chen, Q., Zhang, T., Liu, L., Wang, X.: Electrochemical performance of LiVPO4F/C composite cathode prepared through amorphous vanadium phosphorus oxide intermediate. J. Solid State Electrochem. 16, 1211–1217 (2012)

    Article  Google Scholar 

  166. Gong, H., Yu, Y., Li, T., Mei, T., Xing, Z., Zhu, Y., Qian, Y., Shen, X.: Solvothermal synthesis of LiFePO4/C nanopolyhedrons and microellipsoids and their performance in lithium-ion batteries. Mater. Lett. 66, 374–376 (2012)

    Article  Google Scholar 

  167. Qiao, Y.Q., Wang, X.L., Xiang, J.Y., Zhang, D., Liu, W.L., Tu, J.P.: Electrochemical performance of Li3V2(PO4)3/C cathode materials using stearic acid as a carbon source. Electrochim. Acta 56, 2269–2275 (2011)

    Article  Google Scholar 

  168. Zhou, F., Zhao, X., Dahn, J.R.: Reactivity of charged LiVPO4F with 1M LiPF6 EC:DEC electrolyte at high temperature as studied by accelerating rate calorimetry. Electrochem. Commun. 11, 589–591 (2009)

    Article  Google Scholar 

  169. Jiang, T., Chen, G., Li, A., Wang, C., Wei, Y.: Sol-gel preparation and electrochemical properties of Na3V2(PO4)2F3/C composite cathode material for lithium ion batteries. J. Alloys Compd. 478, 604–607 (2009)

    Article  Google Scholar 

  170. Barker, J., Gover, R.K.B., Burns, P., Bryan, A.J.: A lithium-ion cell based on a sodium insertion material. Electrochem. Solid-State Lett. 9, A190–A192 (2006)

    Article  Google Scholar 

  171. Barker, J., Gover, R.K.B., Burns, P., Bryan, A.J.: Li4/3Ti5/3O4 ‖ Na3V2 (PO4) 2F3: an example of a hybrid-ion cell using a non-graphitic anode. J. Electrochem. Soc. 154, A882–A887 (2007)

    Article  Google Scholar 

  172. Meins, J.M.L., Bohnke, O., Courbion, G.: Ionic conductivity of crystalline and amorphous Na3Al2(PO4)2F3. Solid State Ionics 111, 67–75 (1998)

    Article  Google Scholar 

  173. Meins, J.M.L., Crosnier-Lopez, M.P., Hemon-Ribaud, A., Courbion, G.: Phase transitions in the Na3M2(PO4)2F3 family (M = Al3+, V3+, Cr3+, Fe3+, Ga3+): synthesis, thermal, structural, and magnetic studies. J. Solid State Chem. 148, 260–277 (1999)

    Article  Google Scholar 

  174. Barker, J., Saidi, M.Y., Swoyer, J.L.: A comparative investigation of the Li insertion properties of the novel fluorophosphate phases, NaVPO4F and LiVPO4F. J. Electrochem. Soc. 151, A1670–A1677 (2004)

    Article  Google Scholar 

  175. Barker, J., Saidi, M.Y., Swoyer, J.L.: A sodium-ion cell based on the fluorophosphate compound NaVPO4F electrochem. Solid State Lett. 6, A1–A4 (2003)

    Article  Google Scholar 

  176. Zhuo, H., Wang, X., Tang, A., Liu, Z., Gamboa, S., Sebastian, P.J.: The preparation of NaV1−xCrxPO4F cathode materials for sodium-ion battery. J. Power Sources 160, 698–703 (2006)

    Article  Google Scholar 

  177. Sauvage, F., Quarez, E., Tarascon, J.M., Baudrin, E.: Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5. Solid State Sci. 8, 1215–1221 (2006)

    Article  Google Scholar 

  178. Zhao, J., He, J., Ding, X., Zhou, J., Ma, Y.O., Wu, S., Huang, R.: A novel sol-gel synthesis route to NaVPO4F as cathode material for hybrid lithium ion batteries. J. Power Sources 195, 6854–6859 (2010)

    Google Scholar 

  179. Zhang, C.X., He, J., Zhao, G., Zhao, J.: Electrochemical characteristics of C-doped NaVPO4F cathode material for sodium-ion battery. Chin. J. Inorg. Chem. 23, 649–654 (2007)

    Google Scholar 

  180. Li, Y., Zhou, Z., Gao, X.P., Yan, J.: A novel sol-gel method to synthesize nanocrystalline LiVPO4F and its electrochemical Li intercalation performances. J. Power Sources 160, 633–637 (2006)

    Article  Google Scholar 

  181. Dominko, R., Conte, D.E., Hanzel, D., Gaberscek, M., Jamnik, J.: Impact of synthesis conditions on the structure and performance of Li2FeSiO4. J. Power Sources 178, 842–847 (2008)

    Article  Google Scholar 

  182. Dominko, R.: Li2MSiO4 (M=Fe and/or Mn) cathode materials. J. Power Sources 184, 462–468 (2008)

    Article  Google Scholar 

  183. Lv, D., Wen, W., Huang, X., Bai, J., Mi, J., Wu, S., Yang, Y.: A novel Li2FeSiO4/C composite: synthesis, characterization and high storage capacity. J. Mater. Chem. 21, 9506–9512 (2011)

    Article  Google Scholar 

  184. Muraliganth, T., Stroukoff, K.R., Manthiram, A.: Microwave-solvothermal synthesis of nanostructured Li2MSiO4/C (M=Mn and Fe) cathodes for lithium-ion batteries. Chem. Mater. 22, 5754–5761 (2010)

    Article  Google Scholar 

  185. Huang, X., Li, X., Wang, H., Pan, Z., Qu, M., Yu, Z.: Synthesis and electrochemical performance of Li2FeSiO4/C as cathode material for lithium batteries. Solid State Ionics 181, 1451–1455 (2010)

    Article  Google Scholar 

  186. Deng, C., Zhang, S., Fu, B.L., Yang, S.Y., Ma, L.: Characterization of Li2MnSiO4 and Li2FeSiO4 cathode materials synthesized via a citric acid assisted sol-gel method. Mater. Chem. Phys. 14, 14–17 (2010)

    Article  Google Scholar 

  187. Ensling, D., Stjerndahl, M., Nyten, A., Gustafsson, T., Thomas, J.O.: A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI- and LiPF6-based electrolytes. J. Mater. Chem. 19, 82–88 (2009)

    Article  Google Scholar 

  188. Zhang, S., Deng, C., Yang, S.Y.: Preparation of nano-Li2FeSiO4 as cathode material for lithium-ion batteries. Electrochem. Solid-State Lett. 12, A136–A139 (2009)

    Article  Google Scholar 

  189. Kam, K.C., Gustafsson, T., Thomas, J.O.: Synthesis and electrochemical properties of nanostructured Li2FeSiO4/C cathode material for Li-ion batteries. Solid State Ionics 192, 356–359 (2010)

    Article  Google Scholar 

  190. Fan, X.Y., Li, Y., Wang, J.J., Gou, L., Zhao, P., Li, D.L., Huang, L., Sun, S.G.: Synthesis and electrochemical performance of porous Li2FeSiO4/C cathode material for long-life lithium-ion batteries. J. Alloys Compd. 493, 77–80 (2010)

    Article  Google Scholar 

  191. Deng, C., Zhang, S., Yang, S.Y., Fu, B.L., Ma, L.: Synthesis and characterization of Li2Fe0.97M0.03SiO4 (M=Zn2+, Cu2+, Ni2+) cathode materials for lithium ion batteries. J. Power Sources 196, 386–392 (2011)

    Article  Google Scholar 

  192. Rangappa, D., Murukanahally, K.D., Tomai, T., Unemoto, A., Honma, I.: Ultrathin nanosheets of Li2MSiO4 (M=Fe, Mn) as high-capacity Li-ion battery electrode. Nano Lett. 12, 1146–1151 (2012)

    Article  Google Scholar 

  193. Yan, Z., Cai, S., Zhou, X., Zhao, Y., Miao, L.: Sol-gel synthesis of nanostructured Li2FeSiO4/C as cathode material for lithium ion battery. J. Electrochem. Soc. 159, A894–A898 (2012)

    Article  Google Scholar 

  194. Liu, Y., Cao, C., Li, J.: Enhanced electrochemical performance of carbon nanospheres–LiFePO4 composite by PEG based sol-gel synthesis. Electrochim. Acta 55, 3921–3926 (2010)

    Article  Google Scholar 

  195. Gong, Z.L., Li, Y.X., He, G.N., Li, J., Yang, Y.: Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel process. Electrochem. Solid-State Lett. 11, A60–A63 (2008)

    Article  Google Scholar 

  196. Guo, H.J., Cao, X., Li, X.Q., Li, L.M., Li, X.H., Wang, Z.X., Peng, W.J., Li, Q.H.: Optimum synthesis of Li2Fe1−xMnxSiO4/C cathode for lithium ion batteries. Electrochim. Acta 55, 8036–8042 (2010)

    Article  Google Scholar 

  197. Lu, Z., MacNeil, D.D., Dahn, J.R.: Layered Li [NixCo1 − 2xMnx] O2 cathode materials for lithium-ion batteries. Electrochem. Solid State Lett. 4, A200–A203 (2001)

    Article  Google Scholar 

  198. Ohzuku, T., Makimura, Y.: Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem. Lett. 30, 642–643 (2001)

    Article  Google Scholar 

  199. Makimura, Y., Ohzuku, T.: Lithium insertion material of LiNi1/2Mn1/2O2 for advanced lithium-ion batteries. J. Power Sources 119–121, 156–160 (2003)

    Article  Google Scholar 

  200. Lu, H., Zhou, H., Svensson, A.M., Fossdal, A., Sheridan, E., Lu, S., Vullum-Bruer, F.: High capacity Li[Ni0.8Co0.1Mn0.1]O2 synthesized by sol-gel and co-precipitation methods as cathode materials for lithium-ion batteries. Solid State Ionics 249–250, 105–111 (2013)

    Google Scholar 

  201. Park, S.H., Shin, H.S., Myung, S.T., Yoon, C.S., Amine, K., Sun, Y.K.: Synthesis of nanostructured Li[Ni1/3Co1/3Mn1/3]O2 via a modified carbonate process. Chem. Mater. 17, 6–8 (2005)

    Article  Google Scholar 

  202. Zhang, X., Jiang, W.J., Mauger, A., Gendrond, F., Juliend, C.M.: Minimization of the cation mixing in Li1+x(NMC)1−xO2 as cathode material. J. Power Sources 195, 1292–1301 (2010)

    Article  Google Scholar 

  203. Idemoto, Y., Matsui, T.: Thermodynamic stability, crystal structure, and cathodic performance of Lix(Mn1/3Co1/3Ni1/3)O2 depend on the synthetic process and Li content. Solid State Ionics 179, 625–635 (2008)

    Article  Google Scholar 

  204. Cho, S.W., Ryu, K.S.: Sulfur anion doping and surface modification with LiNiPO4 of a LiNi0.5Mn0.3Co0.2O2 cathode. Mater. Chem. Phys. 135, 533–540 (2012)

    Article  Google Scholar 

  205. Parka, S.H., Yoon, C.S., Kang, S.G., Kim, H.S., Moon, S.I., Sun, Y.K.: Synthesis and structural characterization of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode materials by ultrasonic spray pyrolysis method. Electrochim. Acta 49, 557–563 (2004)

    Article  Google Scholar 

  206. Oh, S.W., Park, S.H., Park, C.W., Sun, Y.K.: Structural and electrochemical properties of layered Li[Ni0.5Mn0.5]1−xCoxO2 positive materials synthesized by ultrasonic spray pyrolysis method. Solid State Ionics 171, 167–172 (2004)

    Article  Google Scholar 

  207. Lee, K.S., Myung, S.T., Amine, K., Yashiro, H., Sun, Y.K.: Structural and electrochemical properties of layered Li [Ni1 − 2xCoxMnx] O2  ( x  =  0.1 – 0.3 )  positive electrode materials for Li-ion batteries. J. Electrochem Soc. 154, A971–A977 (2007)

    Google Scholar 

  208. Saavedra-Arias, J.J., Karan, N.K., Pradhan, D.K., Kumar, A., Nieto, S., Thomas, R., Katiyar, R.S.: Synthesis and electrochemical properties of Li(Ni0.8Co0.1Mn0.1)O2 cathode material: ex situ structural analysis by Raman scattering and X-ray diffraction at various stages of charge–discharge process. J. Power Sources 183, 761–765 (2008)

    Article  Google Scholar 

  209. Chen, C.H., Wang, C.J., Hwang, B.J.: Electrochemical performance of layered Li[NixCo1−2xMnx]O2 cathode materials synthesized by a sol-gel method. J. Power Sources 146, 626–629 (2005)

    Article  Google Scholar 

  210. Eom, J., Kim, M.G., Cho, J.: Storage characteristics of LiNi0.8Co0.1 + xMn0.1 − xO2 (x  =  0, 0.03, and 0.06) cathode materials for lithium batteries. J. Electrochem Soc. 155, A239–A245 (2008)

    Google Scholar 

  211. Woo, S.U., Park, B.C., Yoon, C.S., Myung, S.T., Prakash, J., Sun, Y.K.: Improvement of electrochemical performances of Li[Ni0.8Co0.1Mn0.1]O2 cathode materials by fluorine substitution. J. Electrochem Soc. 154, A649–A655 (2007)

    Google Scholar 

  212. Kim, M.H., Shin, H.-S., Shin, D., Sun, Y.K.: Synthesis and electrochemical properties of Li[Ni0.8Co0.1Mn0.1]O2 and Li[Ni0.8Co0.2]O2 via co-precipitation. J. Power Sources 159, 1328–1333 (2006)

    Article  Google Scholar 

  213. Woo, S.W., Myung, S.T., Bang, H., Kim, D.W., Sun, Y.K.: Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution. Electrochim. Acta 54, 3851–3856 (2009)

    Article  Google Scholar 

  214. Cho, J., Jung, H., Park, Y., Kim, G., Lim, H.S.: Electrochemical properties and thermal stability of LiaNi1 − x COx O2 cathode materials. J. Electrochem. Soc. 147, 15–20 (2000)

    Article  Google Scholar 

  215. Bianchi, V., Bach, S., Belhomme, C., Farcy, J., Pereira-Ramos, J.P., Caurant, D., Baffier, N., Willmann, P.: Electrochemical investigation of the Li insertion–extraction reaction as a function of lithium deficiency in Li1−xNi1+xO2. Electrochim. Acta 46, 999–1011 (2001)

    Article  Google Scholar 

  216. Hu, G., Liu, W., Peng, Z., Du, K., Cao, Y.: Synthesis and electrochemical properties of LiNi0.8Co0.15Al0.05O2 prepared from the precursor Ni0.8Co0.15Al0.05OOH. J. Power Sources 198, 258–263 (2012)

    Article  Google Scholar 

  217. Liu, H.S., Zhang, Z.R., Gong, Z.L., Yang, Y.: Origin of deterioration for LiNiO2 cathode material during storage in air. Electrochem. Solid State Lett. 7, A190–A193 (2004)

    Article  Google Scholar 

  218. Shizuka, K., Kiyohara, C., Shima, K., Takeda, Y.: Effect of CO2 on layered Li1+zNi1−x−yCoxMyO2 (M=Al, Mn) cathode materials for lithium ion batteries. J. Power Sources 166, 233–238 (2007)

    Article  Google Scholar 

  219. Armstrong, A.R., Holzapfel, M., Novák, P., Johnson, C.S., Kang, S.H., Thackeray, M.M., Bruce, P.G.: Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J. Am. Chem. Soc. 128, 8694–8698 (2006)

    Article  Google Scholar 

  220. Johnson, C.S., Li, N., Lefief, C., Vaughey, J.T., Thackeray, M.M.: Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1 − x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem. Mater. 20, 6095–6106 (2008)

    Article  Google Scholar 

  221. Kim, M.G., Jo, M., Hong, Y.S., Cho, J.: Template-free synthesis of Li[Ni0.5Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode. Chem. Commun. 1, 218–220 (2009)

    Article  Google Scholar 

  222. Ito, A., Li, D., Ohsawa, Y., Sato, Y.: A new approach to improve the high-voltage cyclic performance of Li-rich layered cathode material by electrochemical pretreatment. J. Power Sources 183, 344–346 (2008)

    Article  Google Scholar 

  223. Yabuuchi, N., Yoshii, K., Myung, S.T., Nakai, I., Komaba, S.: Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3 − LiCo1/3Ni1/3Mn1/3O2. J. Am. Chem. Soc. 133, 4404–4419 (2011)

    Article  Google Scholar 

  224. Li, G.R., Feng, X., Ding, Y., Ye, S.H., Gao, X.P.: AlF3-coated Li(Li0.17Ni0.25Mn0.58)O2 as cathode material for Li-ion batteries. Electrochim. Acta 78, 308–315 (2012)

    Article  Google Scholar 

  225. Zhang, H.Z., Qiao, Q.Q., Li, G.R., Gao, X.P.: PO4 3− polyanion-doping for stabilizing Li-rich layered oxides as cathode materials for advanced lithium-ion batteries. J. Mater. Chem. A 2, 7454–7460 (2014)

    Article  Google Scholar 

  226. Xu, K., Jie, Z., Li, R., Chen, Z., Wu, S., Gu, J., Chen, J.: Synthesis and electrochemical properties of CaF2-coated for long-cycling Li[Mn1/3Co1/3Ni1/3]O2 cathode materials. Electrochim. Acta 60, 130–133 (2012)

    Article  Google Scholar 

  227. Iftekhar, M., Drewett, N.E., Armstrong, A.R., Hesp, D., Braga, F., Ahmed, S.A., Hardwick, L.J.: Characterization of aluminum doped lithium-manganese rich composites for higher rate lithium-ion cathodes. J. Electrochem Soc. 161, A2109–A2116 (2014)

    Google Scholar 

  228. Knight, J.C., Nandakumar, P., Kan, W.H., Manthiram, A.: Effect of Ru substitution on the first charge–discharge cycle of lithium-rich layered oxides. J. Mater. Chem. A 3, 2006–2011 (2015)

    Article  Google Scholar 

  229. Min, J.W., Yim, C.J., Im, W.B.: Facile synthesis of electrospun Li1.2Ni0.17Co0.17Mn0.5O2 nanofiber and its enhanced high-rate performance for lithium-ion battery applications. ACS Appl. Mater. Interfaces 5, 7765–7769 (2013)

    Article  Google Scholar 

  230. Shen, C.H., Wang, Q., Fu, F., Huang, L., Lin, Z., Shen, S.Y., Su, H., Zheng, X.M., Xu, B.B., Li, J.T., Sun, S.G.: Facile synthesis of the Li-rich layered oxide Li1.23Ni0.09Co0.12Mn0.56O2 with superior lithium storage performance and new insights into structural transformation of the layered oxide material during charge-discharge cycle. In situ XRD characterization. ACS Appl. Mater. Interfaces 6, 5516–5524 (2014)

    Article  Google Scholar 

  231. Naoi, K., Yonekura, D., Moriyama, S., Goto, H., Iwama, E., Kubota, S., Ishimoto, S., Naoic, W.: Lithium-rich layered oxide nanoplate/carbon nanofiber composites exhibiting extremely large reversible lithium storage capacity. J. Alloys Compd. 605, 137–141 (2014)

    Article  Google Scholar 

  232. Jung, Y.S., Cavanagh, A.S., Yan, Y., George, S.M., Manthiram, A.: Effects of atomic layer deposition of Al2O3 on the Li[Li0.20Mn0.54Ni0.13Co0.13]O2 cathode for lithium-ion batteries. J. Electrochem Soc. 158, A1298–A1302 (2011)

    Google Scholar 

  233. Uzun, D., Doğrusöz, M., Mazman, M., Biçer, E., Avci, E., Şener, T., Kaypmaz, T.C., Demir-Cakan, R.: Effect of MnO2 coating on layered Li(Li0.1Ni0.3Mn0.5Fe0.1)O2 cathode material for Li-ion batteries. Solid State Ionics 249, 171–176 (2013)

    Article  Google Scholar 

  234. Yuan, W., Zhang, H.Z., Liu, Q., Li, G.R., Gao, X.P.: Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with CeO2 as cathode material for Li-ion batteries. Electrochim. Acta 135, 199–207 (2014)

    Article  Google Scholar 

  235. Kim, I.T., Knight, J.C., Celio, H., Manthiram, A.: Enhanced electrochemical performances of Li-rich layered oxides by surface modification with reduced graphene oxide/AlPO4 hybrid coating. J. Mater. Chem. A 2, 8696–8704 (2014)

    Article  Google Scholar 

  236. Qiao, Q.Q., Zhang, H.Z., Li, G.R., Ye, S.H., Wang, C.W., Gao, X.P.: Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with Li–Mn–PO4 as the cathode for lithium-ion batteries. J. Mater. Chem. A 1, 5262–5268 (2013)

    Google Scholar 

  237. Liu, B., Zhang, Q., He, S., Sato, Y., Zheng, J., Li, D.: Improved electrochemical properties of Li1.2Ni0.18Mn0.59Co0.03O2 by surface modification with LiCoPO4. Electrochim. Acta 56, 6748–6751 (2011)

    Article  Google Scholar 

  238. Sun, Y.Y., Li, F., Qiao, Q.Q., Cao, J.S., Wang, Y.L., Ye, S.H.: Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with LiAlSiO4 fast ion conductor as cathode material for Li-ion batteries. Electrochim. Acta 176, 1464–1475 (2015)

    Article  Google Scholar 

  239. Fu, Q., Du, F., Bian, X., Wang, Y., Yan, X., Zhang, Y., Zhu, K., Chen, G., Wang, C., Wei, Y.: Electrochemical performance and thermal stability of Li1.18Co0.15Ni0.15Mn0.52O2 surface coated with the ionic conductor Li3VO4. J. Mater. Chem. A 2, 7555–7562 (2014)

    Google Scholar 

  240. Li, X., Liu, J., Banis, M.N., Lushington, A., Li, R., Cai, M., Sun, X.: Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy Environ. Sci. 7, 768–778 (2014)

    Google Scholar 

  241. Welsch, A.M., Behrens, H., Horn, I., Roß, S., Heitjans, P.: Self-diffusion of lithium in LiAlSi2O6 glasses studied using mass spectrometry. J. Phys. Chem. A 116, 309–318 (2012)

    Article  Google Scholar 

  242. Shin-ichi, F., Satoshi, S., Kaduhiro, S., Hitoshi, T.: Preparation and ionic conductivity of β-LiAlSiO4 thin film. Solid State Ionics 167, 325–329 (2004)

    Article  Google Scholar 

  243. Tarascon, J.M., McKinnon, W.R., Coowar, F., Bowmer, T.N., Amatucci, G., Guyomard, D.: Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn2O4. J. Electrochem. Soc. 141, 1421–1431 (1994)

    Article  Google Scholar 

  244. Gummow, R.J., Kock, A.D., Thackeray, M.M.: Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells. Solid State Ionics 69, 59–67 (1994)

    Google Scholar 

  245. Thackeray, M.M., Kock, A.D., Rossouw, M.H., Liles, D., Bittihn, R., Hoge, D.: Spinel electrodes from the Li‐Mn‐O system for rechargeable lithium battery applications. J. Electrochem Soc. 139, 363–366 (1992)

    Google Scholar 

  246. Wan, C., Wu, M.: Synthesis of spherical LiMn2O4 cathode material by dynamic sintering of spray-dried precursors. Powder Technol. 199, 154–158 (2010)

    Article  Google Scholar 

  247. Shukla, A.K., Kumar, T.P.: Materials for next-generation lithium batteries. Curr. Sci. 94, 314–331 (2008)

    Google Scholar 

  248. Kim, D.K., Muralidharan, P., Lee, H.W., Ruffo, R., Yang, Y., Chan, C.K., Peng, H., Huggins, R.A., Cui, Y.: Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 8, 3948–3952 (2008)

    Article  Google Scholar 

  249. Hosono, E., Kudo, T., Honma, I., Matsuda, H., Zhou, H.: Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett. 9, 1045–1051 (2009)

    Article  Google Scholar 

  250. Xia, Y., Zhou, Y., Yoshio, M.: Capacity fading on cycling of 4 V Li/ LiMn2O4 cells. J. Electrochem. Soc. 144, 2593–2600 (1997)

    Article  Google Scholar 

  251. Pistoia, G., Antonini, A., Rosati, R., Zane, D.: Storage characteristics of cathodes for Li-ion batteries. Electrochim. Acta 41, 2683–2689 (1996)

    Article  Google Scholar 

  252. Jang, D.H., Shin, Y.J., Oh, S.M.: Dissolution of spinel oxides and capacity losses in 4 V Li/ LixMn2O4 cells. J. Electrochem. Soc. 143, 2204–2211 (1996)

    Article  Google Scholar 

  253. Yamada, A.: Lattice instability in Li(LixMn2−x)O4. J. Solid State Chem. 122, 160–165 (1996)

    Article  Google Scholar 

  254. Song, D., Ikuta, H., Uchida, T., Wakihara, M.: The spinel phases LiAlyMn2 − yO4 (y = 0, 1/12, 1/9, 1/6, 1/3) and Li(Al, M)1/6Mn11/6O4 (M = Cr, Co) as the cathode for rechargeable lithium batteries. Solid State Ionics 117, 151–156 (1999)

    Article  Google Scholar 

  255. Iqbal, M.J., Zahoor, S.: Synthesis and characterization of nanosized lithium manganate and its derivatives. J. Power Sources 165, 393–397 (2007)

    Article  Google Scholar 

  256. Eftekhari, A.: Electrochemical performance and cyclability of LiFe0.5Mn1.5O4 as a 5 V cathode material for lithium batteries. J. Power Sources 124, 182–190 (2003)

    Article  Google Scholar 

  257. Gummow, R.J., Dekock, A., Thackeray, M.M.: Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells. Solid State Ionics 69, 59–67 (1994)

    Article  Google Scholar 

  258. Lee, J.H., Hong, J.K., Jang, D.H., Sun, Y.K., Oh, S.M.: Degradation mechanisms in doped spinels of LiM0.05Mn1.95O4 (M=Li, B, Al Co, and Ni) for Li secondary batteries. J. Power Sources 89, 7–14 (2000)

    Article  Google Scholar 

  259. Park, S.H., Park, K.S., Sun, Y.K., Nahm, K.S.: Synthesis and characterization of a new spinel, Li1.02Al0.25Mn1.75 O 3.97 S 0.03, operating at potentials between 4.3 and 2.4 V. J. Electrochem Soc. 147, 2116–2121 (2000)

    Google Scholar 

  260. Amatucci, G.G., Perera, N., Zheng, T., Plitz, L., Tarascon, J.M.: Enhancement of the electrochemical properties of LiMn2O4 through chemical substitution. J. Power Sources 81, 39–43 (1999)

    Article  Google Scholar 

  261. Subramania, A., Angayarkanni, N., Vasudevan, T.: Synthesis of nano-crystalline LiSrxMn2−xO4 powder by a novel sol-gel thermolysis process for Li-ion polymer battery. J. Power Sources 158, 1410–1413 (2006)

    Article  Google Scholar 

  262. Kovacheva, D., Gadjov, H., Petrov, K., Mandel, S.: Synthesizing nanocrystalline LiMn2O4 by a combustion route. J. Mater. Chem. 12, 1184–1188 (2002)

    Article  Google Scholar 

  263. Bach, S., Henry, M., Baffier, N., Livage, J.: Sol-gel synthesis of manganese oxides. J. Solid State Chem. 88, 325–333 (1990)

    Article  Google Scholar 

  264. Pereira-Ramos, J.P.: Electrochemical properties of cathodic materials synthesized by low-temperature techniques. J. Power Sources 54, 120–126 (1995)

    Article  Google Scholar 

  265. Barboux, P., Tarascon, J.M., Shokoohi, F.K.: The use of acetates as precursors for the low-temperature synthesis of LiMn2O4 and LiCoO2 intercalation compounds. J. Solid State Chem. 94, 185–196 (1991)

    Article  Google Scholar 

  266. Liu, W., Farrington, G.C., Chaput, F., Dunn, B.: Synthesis and electrochemical studies of spinel phase LiMn2O4 cathode materials prepared by the pechini process. J. Electrochem. Soc. 143, 879–884 (1996)

    Article  Google Scholar 

  267. Thirunakaran, R., Ravikumar, R., Vanitha, S., Gopukumar, S., Sivashanmugam, A.: Glutamic acid-assisted sol-gel synthesis of multi-doped spinel lithium manganate as cathode materials for lithium rechargeable batteries. Electrochim. Acta 58, 348–358 (2011)

    Article  Google Scholar 

  268. Thirunakaran, R., Kalaiselvi, N., Periasamy, P., Babu, B.R., Renganathan, N.G., Muniyandi, N., Raghavan, M.: Significance of Mg doped LiMn2O4 spinels as attractive 4 V cathode materials for use in lithium batteries. Ionics 7, 187–191 (2001)

    Article  Google Scholar 

  269. Guo, S., Zhang, S., He, X., Pu, W., Jiang, C., Wan, C.: Synthesis and characterization of Sn-doped LiMn2O4 cathode materials for rechargeable Li-ion batteries. J. Electrochem. Soc. 155, A760–A763 (2008)

    Article  Google Scholar 

  270. Thirunakaran, R., Sivashanmugam, A., Gopukumar, S., Dunnill, C.W., Gregory, D.H.: Electrochemical behaviour of nano-sized spinel LiMn2O4 and LiAlxMn2−xO4 (x = Al: 0.00–0.40) synthesized via fumaric acid-assisted sol-gel synthesis for use in lithium rechargeable batteries. J. Phys. Chem. Solids 69, 2082–2090 (2008)

    Article  Google Scholar 

  271. Thirunakaran, R., Sivashanmugam, A., Gopukumar, S., Dunnill, C.W., Gregory, D.H.: Phthalic acid assisted nano-sized spinel LiMn2O4 and LiCrxMn2xO4 (x = 0.00–0.40) via sol-gel synthesis and its electrochemical behaviour for use in Li-ion-batteries. Mater. Res. Bull. 43, 2119–2129 (2008)

    Article  Google Scholar 

  272. Michalska, M., Lipińska, L., Mirkowska, M., Aksienionek, M., Diduszko, R., Wasiucionek, M.: Nanocrystalline lithium-manganese oxide spinels for Li-ion batteries—Sol-gel synthesis and characterization of their structure and selected physical properties. Solid State Ionics 188, 160–164 (2011)

    Article  Google Scholar 

  273. Wang, Z.J., Du, J.L., Duan, W., Niu, Y.Q., Wu, Z.: LiMn2xNixO4 spinel oxides as high-temperature lithium battery cathode materials for borehole applications. Int. J. Electrochem. Sci. 8, 6231–6242 (2013)

    Google Scholar 

  274. Wang, Z., Du, J., Li, Z., Wu, Z.: Sol-gel synthesis of Co-doped LiMn2O4 with improved high-rate properties for high temperature lithium batteries. Ceram. Int. 40, 3527–3531 (2014)

    Article  Google Scholar 

  275. Liu, W., Farrington, G.C., Chaput, F., Dunn, B.: Intercalation-induced stress and heat generation within single lithium-ion battery cathode particles. J. Electrochem. Soc. 143, 879–884 (1996)

    Article  Google Scholar 

  276. Guoping, W., Qingtang, Z., Zuolong, Y., MeiZheng, Q.: The effect of different kinds of nano-carbon conductive additives in lithium ion batteries on the resistance and electrochemical behavior of the LiCoO2 composite cathodes. Solid State Ionics 179, 263–268 (2008)

    Article  Google Scholar 

  277. Sheem, K., Lee, Y.H., Lim, H.S.: High-density positive electrodes containing carbon nanotubes for use in Li-ion cells. J. Power Sources 158, 1425–1430 (2006)

    Article  Google Scholar 

  278. Wang, L., Huang, Y., Jiang, R., Jia, D.: Nano-LiFePO4∕ MWCNT cathode materials prepared by room-temperature solid-state reaction and microwave heating. J. Electrochem. Soc. 154, A1015–A1019 (2007)

    Article  Google Scholar 

  279. Li, J., Tang, S., Lu, L., Zeng, H.C.: Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self assembly. J. Am. Chem. Soc. 129, 9401–9409 (2007)

    Article  Google Scholar 

  280. Chen, G., Wang, Z., Xia, D.: One-pot synthesis of carbon nanotube@SnO2 − Au coaxial nanocable for lithium-ion batteries with high rate capability. Chem. Mater. 20, 6951–6956 (2008)

    Article  Google Scholar 

  281. Liu, X.M., Huang, Z.D., Oh, S., Ma, P.C., Chan, P.C.H., Vedam, G.K., Kang, K., Kim, J.K.: Sol-gel synthesis of multiwalled carbon nanotube-LiMn2O4 nanocomposites as cathode materials for Li-ion batteries. J. Power Sources 195, 4290–4296 (2010)

    Article  Google Scholar 

  282. Idemoto, Y., Narai, H., Koura, N.: Crystal structure and cathode performance dependence on oxygen content of LiMn1.5Ni0.5O4 as a cathode material for secondary lithium batteries. J. Power Sources 119–121, 125–129 (2003)

    Article  Google Scholar 

  283. Sun, Y., Wang, Z., Huang, X., Chen, L.: Synthesis and electrochemical performance of spinel LiMn2−x−yNixCryO4 as 5-V cathode materials for lithium ion batteries. J. Power Sources 132, 161–165 (2004)

    Article  Google Scholar 

  284. Talyosef, Y., Markovsky, B., Salitra, G., Aurbach, D., Kim, H.J., Choi, S.: The study of LiNi0.5Mn1.5O4 5-V cathodes for Li-ion batteries. J. Power Sources 146, 664–669 (2005)

    Article  Google Scholar 

  285. Ohzuku, T., Takeda, S., Iwanaga, M.: Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (Me: 3d-transition metal) having spinel framework structures: a series of 5 volt materials for advanced lithium-ion batteries. J. Power Sources 81–82, 90–94 (1999)

    Article  Google Scholar 

  286. Xu, X.X., Yang, J., Wang, Y.Q., NuLi, Y.N., Wang, J.L.: LiNi0.5Mn1.5O3.975F0.05 as novel 5 V cathode material. J. Power Sources 174, 1113–1116 (2007)

    Article  Google Scholar 

  287. Arunkumar, T.A., Manthiram, A.: Influence of lattice parameter differences on the electrochemical performance of the 5 V spinel LiMn1.5−yNi0.5−zMy+zO4 (M = Li, Mg, Fe, Co, and Zn). Electrochem. Solid State Lett. 8, A403–A405 (2005)

    Google Scholar 

  288. Lee, Y., Mun, J., Kim, D.W., Lee, J.K., Choi, W.: Surface modification of LiNi0.5Mn1.5O4 cathodes with ZnAl2O4 by asol-gel method for lithium ion batteries. Electrochim. Acta 115, 326–331 (2014)

    Article  Google Scholar 

  289. Arrebola, J.C., Caballero, A., Hernán, L., Morales, J.: Re-examining the effect of ZnO on nanosized 5 V LiNi0.5Mn1.5O4 spinel: An effective procedure for enhancing its rate capability at room and high temperatures. J. Power Sources 195, 4278–4284 (2010)

    Article  Google Scholar 

  290. Wu, H.M., Belharouak, I., Abouimrane, A., Sun, Y.K., Amine, K.: Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries. J. Power Sources 195, 2909–2913 (2010)

    Article  Google Scholar 

  291. Fan, Y., Wang, J., Tang, Z., He, W., Zhang, J.: Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries. Electrochim. Acta 52, 3870–3875 (2007)

    Article  Google Scholar 

  292. Kang, H.B., Myung, S.T., Amine, K., Lee, S.M., Sun, Y.K.: Improved electrochemical properties of BiOF-coated 5 V spinel Li[Ni0.5Mn1.5]O4 for rechargeable lithium batteries. J. Power Sources 195, 2023–2028 (2010)

    Article  Google Scholar 

  293. Zawadzki, M.: Synthesis of nanosized and microporous zinc aluminate spinel by microwave assisted hydrothermal method (microwave–hydrothermal synthesis of ZnAl2O4). Solid State Sci. 8, 14–18 (2006)

    Article  Google Scholar 

  294. Shen, S., Hidajat, K., Yu, L.E., Kawi, S.: Simple hydrothermal synthesis of nanostructured and nanorod Zn–Al complex oxides as novel nanocatalysts. Adv. Mater. 16, 541–545 (2004)

    Article  Google Scholar 

  295. Yan, J., Yuan, W., Xie, H., Tang, Z., Mao, W., Ma, L.: Novel self-catalyzed sol-gel synthesis of high-rate cathode Li3V2(PO4)3/C for lithium ion batteries. Mater. Lett. 71, 1–3 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinodkumar Etacheri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Etacheri, V. (2017). Sol-Gel Processed Cathode Materials for Lithium-Ion Batteries. In: Pillai, S., Hehir, S. (eds) Sol-Gel Materials for Energy, Environment and Electronic Applications. Advances in Sol-Gel Derived Materials and Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-50144-4_6

Download citation

Publish with us

Policies and ethics