Skip to main content

An Introduction to Sol-Gel Processing for Aerogels

  • Chapter
  • First Online:

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

Sol-gel processing facilitates effortless control of the composition, properties, and architecture of nanosystems. For this reason, the technology has been adapted as a popular route for the preparation of nanostructures. The process supports the preparation of intricate three-dimensional networks extended throughout a liquid phase (a gel) through the agglomeration of nanoparticles dispersed within a colloidal suspension (sol). In order to gain a greater understanding of the process before exploring the possible applications of the technology, this chapter outlines the activities involved in sol-gel processing. The formation of sol-gel materials is explained by briefly focusing on the mechanisms of hydrolysis and condensation, in addition to ageing and drying of wet gels. Sol-gel processing can be used to form a range of architectures from fibres and films to fine powders and monoliths, however this chapter will focus on sol-gel processing for aerogels specifically.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dorcheh, A.S., Abbasi, M.H.: Silica aerogel; synthesis, properties and characterization. J. Mater. Process. Technol. 199(1–3), 10–26 (2008)

    Google Scholar 

  2. Du, A., Zhou, B., Zhang, Z., Shen, J.: A special material or a new state of matter: a review and reconsideration of the aerogel. Mater. 6(3), 941–968 (2013)

    Google Scholar 

  3. Riffat, S.B., Qiu, G.: A review of state-of-the-art aerogel applications in buildings. Int. J. Low-Carbon Technol. 8(1), 1–6 (2013)

    Google Scholar 

  4. Fricke, J.: Aerogels—highly tenuous solids with fascinating properties. J. Non-Cryst. Solids 100(1–3), 169–173 (1988)

    Google Scholar 

  5. Fricke, J., Emmerling, A.: Aerogels. J. Am. Ceram. Soc. 75(8), 2027–2035 (1992)

    Article  Google Scholar 

  6. Carraher Jr, C.E.: Carraher’s polymer chemistry, CRC Press (2013)

    Google Scholar 

  7. Schultz, J.M., Jensen, K.I., Kristiansen, F.H.: Super insulating aerogel glazing. Sol. Energy Mater. Sol. Cells 89(2), 275–285 (2005)

    Google Scholar 

  8. Eisen, H.J., Wen, L., Hickey G., Braun, D.: Sojourner mars rover thermal performance, SAE Technical Paper (1998)

    Google Scholar 

  9. Fesmire, J.E.: Aerogel insulation systems for space launch applications. Cryogenics 46(2), 111–117 (2006)

    Google Scholar 

  10. Ackerman, W.C., Changming, J., Cho, C.-C., Gnade, B.E., Johnston, G.C., Smith, D.M.: Porous dielectric material with improved pore surface properties for electronics applications. Google Patents (2000)

    Google Scholar 

  11. Cho, C.-C., Gnade, B., Levine, J.D.: Low density, high porosity material as gate dielectric for field emission device. Google Patents (1996)

    Google Scholar 

  12. Wang, C.-T., Wu, C.-L., Chen, I., Huang, Y.-H.: Humidity sensors based on silica nanoparticle aerogel thin films. Sens. Actuators B: Chem. 107(1), 402–410 (2005)

    Google Scholar 

  13. Khuri-Yakub, B., Kim, J., Chou, C.-H., Parent, P., Kino, G. (eds.): A new design for air transducers. Ultrasonics Symposium, 1988 Proceedings, IEEE (1988)

    Google Scholar 

  14. Ahmed, M.S., Attia, Y.A.: Aerogel materials for photocatalytic detoxification of cyanide wastes in water. J. Non-Cryst. Solids 186, 402–407 (1995)

    Google Scholar 

  15. Reynolds, J.G., Coronado, P.R., Hrubesh, L.W.: Hydrophobic aerogels for oil-spill cleanup? intrinsic absorbing properties. Energ Source 23(9), 831–843 (2001)

    Google Scholar 

  16. Danilyuk, A., Kirillov, V., Savelieva, M., Bobrovnikov, V., Buzykaev, A., Kravchenko, E., et al.: Recent results on aerogel development for use in Cherenkov counters. Nuclear instruments and methods in physics research section A: accelerators. Spectrometers, Detectors and Associated Equipment 494(1), 491–494 (2002)

    Google Scholar 

  17. Buzykaev, A., Danilyuk, A., Ganzhur, S., Gorodetskaya, T., Kravchenko, E., Onuchin, A., et al.: Aerogels with high optical parameters for Cherenkov counters. Nuclear instruments and methods in physics research section A: accelerators. Spectrometers, Detectors and Associated Equipment 379(3), 465–467 (1996)

    Google Scholar 

  18. Plata, D.L., Briones, Y.J., Wolfe, R.L., Carroll, M.K., Bakrania, S.D., Mandel, S.G., et al.: Aerogel-platform optical sensors for oxygen gas. J. Non-Cryst. Solids 350, 326–335 (2004)

    Google Scholar 

  19. Baetens, R., Jelle, B.P., Gustavsen, A.: Aerogel insulation for building applications: A state-of-the-art review. Energy Build. 43(4), 761–769 (2011)

    Google Scholar 

  20. Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., et al.: Progress of electrochemical capacitor electrode materials: a review. Int. J. Hydrogen Energy 34(11), 4889–4899 (2009)

    Google Scholar 

  21. Miller, J., Dunn, B., Tran, T., Pekala, R.: Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes. J. Electrochem. Soc. 144(12), L309–L311 (1997)

    Google Scholar 

  22. Pajonk, G.: Aerogel catalysts. Applied Catalysis 72(2), 217–266 (1991)

    Google Scholar 

  23. Reynolds, J.G., Hair, L.M., Coronado, P.R., Droege M.W., Wong, J. (eds.): Aerogel derived catalysts. MRS Proceedings, Cambridge Univ Press (1996)

    Google Scholar 

  24. Shukla, N., Kosny, J.: Aerogel thermal insulation—technology review and cost study for building enclosure applications 120, 294–307 (2014)

    Google Scholar 

  25. Gash, A.E., Tillotson, T.M., Satcher Jr., J.H., Hrubesh, L.W., Simpson, R.L.: New sol–gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors. J. Non-Cryst. Solids 285(1–3), 22–28 (2001)

    Google Scholar 

  26. Wagh, P.B., Begag, R., Pajonk, G.M., Rao, A.V., Haranath, D.: Comparison of some physical properties of silica aerogel monoliths synthesized by different precursors. Mater. Chem. Phys. 57(3), 214–218 (1999)

    Google Scholar 

  27. Zhang, H., Hong C., Qiao, Y.: Synthesis, structural and thermal properties of nano-porous SiO2-based aerogels. INTECH Open Access Publisher (2011)

    Google Scholar 

  28. Brinker C.J., Scherer, G.W.: Sol-gel science: the physics and chemistry of sol-gel processing. Gulf Professional Publishing (1990)

    Google Scholar 

  29. Kim, P.B.S.J.-K., Park J.-K., Kim, H.-K.: Influence of solvent exchange on the physical properties of sodium silicate based aerogel prepared at ambient pressure (2006)

    Google Scholar 

  30. Schwertfeger, F., Frank, D., Schmidt, M.: Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying. J. Non-Cryst. Solids 225(0), 24–29 (1998)

    Google Scholar 

  31. Gurav, J.L., Rao, A.V., Rao, A.P., Nadargi, D.Y., Bhagat, S.D.: Physical properties of sodium silicate based silica aerogels prepared by single step sol–gel process dried at ambient pressure. J. Alloy. Compd. 476(1–2), 397–402 (2009)

    Google Scholar 

  32. Rao, A.V., Bangi, U.K.H., Kavale, M.S., Imai, H., Hirashima, H.: Reduction in the processing time of doped sodium silicate based ambient pressure dried aerogels using shaker. Microporous Mesoporous Mater. 134(1–3), 93–99 (2010)

    Google Scholar 

  33. Bangi, U.K., Rao, A.V., Rao, A.P.: A new route for preparation of sodium-silicate-based hydrophobic silica aerogels via ambient-pressure drying. Sci. Technol. Adv. Mater. 9(3), 035006 (2008)

    Google Scholar 

  34. Sarawade, P.B., Kim, J.-K., Hilonga, A., Kim, H.T.: Production of low-density sodium silicate-based hydrophobic silica aerogel beads by a novel fast gelation process and ambient pressure drying process. Solid State Sci. 12(5), 911–918 (2010)

    Google Scholar 

  35. Bangi, U.K.H., Jung, I.-K., Park, C.-S., Baek, S., Park, H.-H.: Optically transparent silica aerogels based on sodium silicate by a two step sol–gel process and ambient pressure drying. Solid State Sci. 18(0), 50–57 (2013)

    Google Scholar 

  36. Shao, Z., Luo, F., Cheng, X., Zhang, Y.: Superhydrophobic sodium silicate based silica aerogel prepared by ambient pressure drying. Mater. Chem. Phys. 141(1), 570–575 (2013)

    Google Scholar 

  37. Sinkó, K.: Influence of Chemical Conditions on the Nanoporous Structure of Silicate Aerogels. Mater. 3(1), 704–740 (2010)

    Google Scholar 

  38. Norris P.M., Shrinivasan, S.: Aerogels: unique material, fascinating properties and unlimited applications. Annu. Rev. Heat Transf. 14(14), (2005)

    Google Scholar 

  39. Pierre, A.C., Pajonk, G.M.: Chemistry of Aerogels and Their Applications. Chem. Rev. 102, 4243–4265 (2002)

    Google Scholar 

  40. Brinker, C., Keefer, K., Schaefer, D., Ashley, C.: Sol-gel transition in simple silicates. J. Non-Cryst. Solids 48(1), 47–64 (1982)

    Google Scholar 

  41. Rao, A.V., Pajonk, G., Parvathy, N.: Effect of solvents and catalysts on monolithicity and physical properties of silica aerogels. J. Mater. Sci. 29(7), 1807–1817 (1994)

    Google Scholar 

  42. Karmakar, B., De, G., Ganguli, D.: Dense silica microspheres from organic and inorganic acid hydrolysis of TEOS. J. Non-Cryst. Solids 272(2–3), 119–126 (2000)

    Google Scholar 

  43. Wright J.D., Sommerdijk, N.A.: Sol-gel materials: chemistry and applications. CRC press (2000)

    Google Scholar 

  44. Venkateswara Rao, A., Bhagat, S.D.: Synthesis and physical properties of TEOS-based silica aerogels prepared by two step (acid–base) sol–gel process. Solid State Sci. 6(9), 945–952 (2004)

    Google Scholar 

  45. Kirkbir, F., Murata, H., Meyers, D., Chaudhuri, S.R., Sarkar, A.: Drying and sintering of sol-gel derived large SiO2 monoliths. J. Sol-Gel. Sci. Technol. 6(3), 203–217 (1996)

    Google Scholar 

  46. Wagh, P., Rao, A.V., Haranath, D.: Influence of molar ratios of precursor, solvent and water on physical properties of citric acid catalyzed TEOS silica aerogels. Mater. Chem. Phys. 53(1), 41–47 (1998)

    Google Scholar 

  47. Nadargi, D.Y., Kalesh, R.R., Rao, A.V.: Rapid reduction in gelation time and impregnation of hydrophobic property in the tetraethoxysilane (TEOS) based silica aerogels using NH4F catalyzed single step sol–gel process. J. Alloy. Compd. 480(2), 689–695 (2009)

    Google Scholar 

  48. Sarawade, P.B., Kim, J.-K., Kim, H.-K., Kim, H.-T.: High specific surface area TEOS-based aerogels with large pore volume prepared at an ambient pressure. Appl. Surf. Sci. 254(2), 574–579 (2007)

    Google Scholar 

  49. Hæreid, S., Dahle, M., Lima, S., Einarsrud, M.A.: Preparation and properties of monolithic silica xerogels from TEOS-based alcogels aged in silane solutions. J. Non-Cryst. Solids 186(0), 96–103 (1995)

    Google Scholar 

  50. Smitha, S., Shajesh, P., Aravind, P., Kumar, S.R., Pillai, P.K., Warrier, K.: Effect of aging time and concentration of aging solution on the porosity characteristics of subcritically dried silica aerogels. Microporous Mesoporous Mater. 91(1), 286–292 (2006)

    Google Scholar 

  51. Hæreid, S., Anderson, J., Einarsrud, M.A., Hua, D.W., Smith, D.M.: Thermal and temporal aging of TMOS-based aerogel precursors in water. J. Non-Cryst. Solids 185(3), 221–226 (1995)

    Google Scholar 

  52. Estella, J., Echeverría, J.C., Laguna, M., Garrido, J.J.: Effects of aging and drying conditions on the structural and textural properties of silica gels. Microporous Mesoporous Mater. 102(1–3), 274–282 (2007)

    Google Scholar 

  53. Strøm, R., Masmoudi, Y., Rigacci, A., Petermann, G., Gullberg, L., Chevalier, B., Einarsrud, M.-A.: Strengthening and aging of wet silica gels for up-scaling of aerogel preparation. J. Sol-Gel. Sci. Technol. 41(3), 291–298 (2007)

    Google Scholar 

  54. Zarzycki, J., Prassas, M., Phalippou, J.: Synthesis of glasses from gels: the problem of monolithic gels. J. Mater. Sci. 17(11), 3371–3379 (1982)

    Google Scholar 

  55. Haereid, S., Nilsen, E., Ranum, V., Einarsrud, M.-A.: Thermal and temporal aging of two step acid-base catalyzed silica gels in water/ethanol solutions. J. Sol-Gel. Sci. Technol. 8(1–3), 153–157 (1997)

    Google Scholar 

  56. Einarsrud, M.-A., Nilsen, E.: Strengthening of water glass and colloidal sol based silica gels by aging in TEOS. J. Non-Cryst. Solids 226(1–2), 122–128 (1998)

    Google Scholar 

  57. Einarsrud, M.-A., Haereid, S.: Preparation of transparent, monolithic silica xerogels with low density. J. Sol-Gel. Sci. Technol. 2(1–3), 903–906 (1994)

    Google Scholar 

  58. Cuce, E., Cuce, P.M., Wood, C.J., Riffat, S.B.: Toward aerogel based thermal superinsulation in buildings: a comprehensive review. Renew. Sustain. Energy Rev. 34(0), 273–299 (2014)

    Google Scholar 

  59. Hæreid, S., Nilsen, E., Einarsrud, M.-A.: Properties of silica gels aged in TEOS. J. Non-Cryst. Solids 204(3), 228–234 (1996)

    Google Scholar 

  60. Rao, A.V., Rao, A.P., Kulkarni, M.: Influence of gel aging and Na2SiO3/H2O molar ratio on monolithicity and physical properties of water-glass-based aero-gel dried at atmospheric pressure. J. Non-Cryst. Solids 350, 224–229 (2004)

    Google Scholar 

  61. He, F., Zhao, H., Qu, X., Zhang, C., Qiu, W.: Modified aging process for silica aerogel. J. Mater. Process. Technol. 209(3), 1621–1626 (2009)

    Google Scholar 

  62. Kirkbir, F., Murata, H., Meyers, D., Chaudhuri, S.: Drying of aerogels in different solvents between atmospheric and supercritical pressures. J. Non-Cryst. Solids 225, 14–18 (1998)

    Google Scholar 

  63. Cha, Y.C., Kim, C.E., Lee, S.H., Hwang, H.J., Moon, J.W., Han, I.S., et al.: Synthesis of silica aerogel thin film from waterglass. Solid State Phenom. 124, 671–674 (2007)

    Google Scholar 

  64. Kim, C.E., Yoon, J.S., Hwang, H.J.: Synthesis of nanoporous silica aerogel by ambient pressure drying. J. Sol-Gel. Sci. Technol. 49(1), 47–52 (2009)

    Google Scholar 

  65. Patel, P.R., Purohit, N.S., Suthar, M.A.: An Overview of Silica Aerogels. Int. J. ChemTech Res. 1(4), 1052–1057 (2009)

    Google Scholar 

  66. Scherer, G.W., Hæreid, S., Nilsen, E., Einarsrud, M.-A.: Shrinkage of silica gels aged in TEOS. J. Non-Cryst. Solids 202(1), 42–52 (1996)

    Google Scholar 

  67. Tewari, P.H., Hunt, A.J., Lofftus, K.D.: Ambient-temperature supercritical drying of transparent silica aerogels. Mater. Lett. 3(9), 363–367 (1985)

    Google Scholar 

  68. Shi, F., Wang, L., Liu, J.: Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process. Mater. Lett. 60(29–30), 3718–3722 (2006)

    Google Scholar 

  69. Smitha, S., Shajesh, P., Warrier, K.G.K.: Investigations on the effect of experimental parameters on the porosity features of silica aerogels synthesized at ambient drying conditions. Mater. Chem. Phys. 131(1–2), 507–511 (2011)

    Google Scholar 

  70. Land, V.D., Harris, T.M., Teeters, D.C.: Processing of low-density silica gel by critical point drying or ambient pressure drying. J. Non-Cryst. Solids 283(1), 11–17 (2001)

    Google Scholar 

  71. Shlyakhtin, O., Tretyakov, Y.: Recent progress in cryochemical synthesis of oxide materials. J. Mater. Chem. 9(1), 19–24 (1999)

    Google Scholar 

  72. Wu, G., Yu, Y., Cheng, X., Zhang, Y.: Preparation and surface modification mechanism of silica aerogels via ambient pressure drying. Mater. Chem. Phys. 129(1–2), 308–314 (2011)

    Google Scholar 

  73. Rao, A.V., Kulkarni, M.M., Amalnerkar, D.P., Seth, T.: Surface chemical modification of silica aerogels using various alkyl-alkoxy/chloro silanes. Appl. Surf. Sci. 206(1–4), 262–270 (2003)

    Google Scholar 

  74. Rao, A.P., Rao, A.V., Pajonk, G.M.: Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents. Appl. Surf. Sci. 253(14), 6032–6040 (2007)

    Google Scholar 

  75. Kistler, S.S.: Method of producing aerogels. US Patent 2,093,454 (1937)

    Google Scholar 

  76. Ackerman, W.C., Vlachos, M., Rouanet, S., Fruendt, J.: Use of surface treated aerogels derived from various silica precursors in translucent insulation panels. J. Non-Cryst. Solids 285(1–3), 264–271 (2001)

    Google Scholar 

  77. Rao, A.P., Rao, A.V.: Microstructural and physical properties of the ambient pressure dried hydrophobic silica aerogels with various solvent mixtures. J. Non-Cryst. Solids 354(1), 10–18 (2008)

    Google Scholar 

  78. Deshpande, R., Hua, D.-W., Smith, D.M., Brinker, C.J.: Pore structure evolution in silica gel during aging/drying. III. Effects of surface tension. J. Non-Cryst. Solids 144, 32–44 (1992)

    Google Scholar 

  79. Kumar, S.R., Pillai, P.K., Warrier, K.: Synthesis of high surface area silica by solvent exchange in alkoxy derived silica gels. Polyhedron. 17(10), 1699–1703 (1998)

    Google Scholar 

  80. Wang, L.-J., Zhao, S.-Y., Yang, M.: Structural characteristics and thermal conductivity of ambient pressure dried silica aerogels with one-step solvent exchange/surface modification. Mater. Chem. Phys. 113(1), 485–490 (2009)

    Google Scholar 

  81. Bhagat, S.D., Kim, Y.-H., Suh, K.-H., Ahn, Y.-S., Yeo, J.-G., Han, J.-H.: Superhydrophobic silica aerogel powders with simultaneous surface modification, solvent exchange and sodium ion removal from hydrogels. Microporous Mesoporous Mater. 112(1), 504–509 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh C. Pillai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dervin, S., Pillai, S.C. (2017). An Introduction to Sol-Gel Processing for Aerogels. In: Pillai, S., Hehir, S. (eds) Sol-Gel Materials for Energy, Environment and Electronic Applications. Advances in Sol-Gel Derived Materials and Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-50144-4_1

Download citation

Publish with us

Policies and ethics