Skip to main content

Bloch Surface Waves on A One Dimensional Photonic Crystal

  • Chapter
  • First Online:
Photon Management Assisted by Surface Waves on Photonic Crystals

Part of the book series: PoliTO Springer Series ((PTSS))

Abstract

The first observations of Lord Rayleigh about the reflective properties of certain crystals of chlorate of potash in 1888 [1], led him to hypothesize that “on the whole, the character of the reflected light appears to me to harmonize generally with the periodical theory”. In that paper, he commented on the peculiar internal color observed in the crystals, arguing that the phenomenon could be attributed to an internal periodic structure acting as a grating. Coherent superposition causing constructive interference along certain directions for certain wavelengths was responsible for the observed coloration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Rayleigh, On the remarkable phenomenon of crystalline reflexion described by prof. Stokes, Phil. Mag. S. 5, 26, (1888).

    Google Scholar 

  2. P. Vukusic and R. Sambles, Photonic structures in biology, Nature 424, 852–855, (2003).

    Google Scholar 

  3. A. R. Parker and H. E. Townley, Biomimetics of photonic nanostructures. Nat. Nanotech. 2, 347–353, (2007).

    Google Scholar 

  4. J. D. Joannopoulos, S. G. Jhonson, J. N. Winn, R. D. Meade, Photonic Crystals. Molding the flow of light., \(2^{nd}\) ed., Princeton Press, Princeton, NJ, (2008).

    Google Scholar 

  5. T. Baba, Slow light in photonic crystals, Nature Photonics 2, 465–473, (2008).

    Google Scholar 

  6. T. F. Krauss, Slow light in photonic crystal waveguides, J. Phys. D: Appl. Phys. 40, 2666–2670, (2007).

    Google Scholar 

  7. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, Two-Dimensional Photonic Band-Gap Defect Mode Laser, Science 284 (5421), 1819–1921, (1999).

    Google Scholar 

  8. A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich and L. A. Kolodziejski, Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode, Appl. Phys. Lett. 78, 563 (2001).

    Google Scholar 

  9. P. Russell, Photonic Crystal Fibers, Science, 299 (5605), 358–362, (2003).

    Google Scholar 

  10. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling and B. A. Alamariu, Efficiency enhancement in Si solar cells by textured photonic crystal back reflector, Appl. Phys. Lett. 89, 111111, (2006).

    Google Scholar 

  11. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Donor and acceptor modes in photonic band structure, Phys. Rev. Lett. 67, 3380, (1991).

    Google Scholar 

  12. P. Lalanne C. Sauvan and J. P. Hugonin, Photon confinement in photonic crystal nanocavities, Laser and Photonics Reviews 2 (6), 514–526, (2008).

    Google Scholar 

  13. J. D. Joannopoulos, P. R. Villeneuve, S. Fan, Photonic crystals: putting a new twist on light, Nature 386, 143–149, (1997).

    Google Scholar 

  14. S. Noda, M. Fujita, T. Asano, Spontaneous-emission control by photonic crystals and nanocavities, Nature Photonics 1, 449–458, (2007).

    Google Scholar 

  15. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto and J. Vuckovic, Controlling the Spontaneous Emission Rate of Single Quantum Dotsin a Two-Dimensional Photonic Crystal, PRL 95, 013904, (2005).

    Google Scholar 

  16. P. Lohdal, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh and W. L. Vos, Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals., Nature 430, 654–657, (2004).

    Google Scholar 

  17. E. M. Purcell, Phys. Rev. 69, 681, (1946).

    Google Scholar 

  18. L. Novotny and N. F. Van Hulst, Antennas for light, Nat. Photon. 5, 83–90, (2011).

    Google Scholar 

  19. M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, Inhibited Spontaneous Emission of Quantum Dots Observed in a 3D Photonic Band Gap, Phys. Rev. Lett. 107, 193903, (2011).

    Google Scholar 

  20. F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis and F. Geobaldo, Fast optical vapour sensing by Bloch surface waves on porous silicon membranes, Phys. Chem. Chem. Phys 12, 502–506, (2010).

    Google Scholar 

  21. F. Michelotti, A. Sinibaldi, P. Munzert, N. Danz, and E. Descrovi Probing losses of dielectric multilayers by means of Bloch surface waves, Opt. Lett. 38, 616–618, (2013).

    Google Scholar 

  22. H. Raether, Surface Plasmons, Springer-Verlag, Berlin (1988).

    Google Scholar 

  23. R. D. Maede, K. D. Brommer, A. M. Rappe and J. D. Joannopoulos, Electromagnetic Bloch Waves at the surface of a photonic crystal Phys. Rev. B, 44, 109601, (1995).

    Google Scholar 

  24. E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin and F. Giorgis, Guided Bloch surface waves on ultrathin polymeric ridges, Nano Lett. 10, 2087–2091 (2012).

    Google Scholar 

  25. N. Ganesh, I. D. Block and B. T. Cunningham, Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio, Appl. Phys. Lett. 89, 023901, (2006).

    Google Scholar 

  26. R. Badugu, J. Mao, S. Blair, D. Zhang, E. Descrovi, A. Angelini, Y. Huo and J. R Lakowicz, Bloch Surface Wave-Coupled Emission at Ultra-Violet Wavelengths, J. Phys. Chem. C, 120 (50), 28727–34, (2016).

    Google Scholar 

  27. L. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco and H. P. Herzig, Manipulating Bloch surface waves in 2D: a platform concept-based flat lens, Light: Sci. Appl. 3, e124, (2013).

    Google Scholar 

  28. M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis and E. Descrovi Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal, Appl. Phys. Lett 99, 043302 (2011).

    Google Scholar 

  29. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye and D. W. Pohl, Local excitation, scattering, and interference of surface plasmons, Phys. Rev. Lett. 77 (9), 1889, 1996.

    Google Scholar 

  30. T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin and H. P. Herzig, Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation, JOSA B, 27 (8), 1617–1625, (2010).

    Google Scholar 

  31. X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, H. P. Herzig Phase-sensitive near field Investigation of Bloch surface wave propagation in curved waveguides. JEOS - RP, Europe, v. 9, oct. 2014. ISSN 1990-2573.

    Google Scholar 

  32. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, J. R. Krenn, Leakage radiation microscopy of surface plasmon polaritons, Mat. Sci.Eng. B 149, 220–229, (2008).

    Google Scholar 

  33. A. Angelini, E. Enrico, N. De Leo, P. Munzert, L. Boarino, F. Michelotti, F. Giorgis and E. Descrovi, Fluorescence diffraction assisted by Bloch surface waves on a one-dimensional photonic crystal, New J. Phys. 15, 073002, (2013).

    Google Scholar 

  34. A. Angelini, Resonant evanescent complex field on dielectric multilayers, Opt. Lett. 40(24), 5746–5749, (2015).

    Google Scholar 

  35. W. L. Barnes, A. Dereux and T. W. Ebbesen, Surface Plasmon subwavelength optics, Nature 424, 824–830, (2003).

    Google Scholar 

  36. J.-M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, Beaming Visible Light with a Plasmonic Aperture Antenna, ACS Phot. 1, 365–370, (2014).

    Google Scholar 

  37. T. Zentgraf, Y. Liu, M.H. Mikkelsen, J. Valentine and X. Zhang, Plasmonic Luneburg and Eaton lenses, Nat. Nanotech. 6, 151–155, (2011).

    Google Scholar 

  38. C. Zhao and J. Zhang, Flexible wavefront manipulation of surface plasmon polaritons without mechanical motion components, Appl. Phys. Lett. 98, 211108, (2011).

    Google Scholar 

  39. C. Zhao, J. Wang, X. Wu and J. Zhang, Focusing surface plasmons to multiple focal spots with a launching diffraction grating, Appl. Phys. Lett. 94, 111105 (2009).

    Google Scholar 

  40. C. Zhao and J. Zhang, Binary plasmonics: launching surface plasmon polaritons to a desired pattern, Opt. Lett. 34, 2417, (2009).

    Google Scholar 

  41. C. Zhao, Y. Liu, Y. Zhao, N. Fang and T.J. Huang, A reconfigurable plasmofluidic lens, Nat. Comm. 4, 2305, (2013).

    Google Scholar 

  42. G. M. Lerman and U. Levy, Pin Cushion Plasmonic Device for Polarization Beam Splitting, Focusing, and Beam Position Estimation, Nano Lett. 13, 1100–1105, (2013).

    Google Scholar 

  43. E. Descrovi, F. Giorgis, L. Dominici and F. Michelotti, Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal, Opt. Lett. 33 (3), 243–245, (2008).

    Google Scholar 

  44. T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa and F. Michelotti, Two-dimensional optics on silicon nitride multilayer: Refraction of Bloch surface waves, Appl. Phys. Lett. 96, 151101, (2010).

    Google Scholar 

  45. A. Angelini, P. Munzert, E. Enrico, N. De Leo, L. Scaltrito, L. Boarino, F. Giorgis and E. Descrovi, Surface-Wave-Assisted Beaming of Light Radiation from Localized Sources ACS Phot. 1, 612–617 (2015).

    Google Scholar 

  46. A. Angelini, E. Barakat, P. Munzert, L. Boarino, N. De Leo, E. Enrico, F. Giorgis, H. P. Herzig, C. F. Pirri, E. Descrovi, Focusing and Extraction of Light mediated by Bloch Surface Waves, Sci. Rep. 4, 5428, (2014).

    Google Scholar 

  47. M. Liscidini, J. E. Sipe, Analysis of Bloch-surface-wave assisted diffraction-based biosensors, JOSAB 26 (2), 279–289, (2009).

    Google Scholar 

  48. T. Holmgaard and S. I. Bozhevolnyi, Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides, Phys. Rev. B 75, 245405, (2007).

    Google Scholar 

  49. E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, F. Michelotti, Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications, Appl. Phys. Lett. 91, 241109 (2007).

    Google Scholar 

  50. S. Santi, V. Musi, E. Descrovi, V. Paeder, J. Di Francesco, L. Hvozdara, P. van der Wal, H. A. Lashuel, A. Pastore, R. Neier, H. P. Herzig, Real-time Amyloid Aggregation Monitoring with a Photonic Crystal-based Approach, Chem. Phys. Chem. 14, 83–3476, (2013).

    Google Scholar 

  51. R. Ulrich, Theory of the Prism-Film Coupler by Plane-Wave Analysis, J. Opt. Soc. Am. 60, 1337 (1970).

    Google Scholar 

  52. A. Angelini, A. Lamberti, S. Ricciardi, F. Frascella, P. Munzert, N. De Leo and E. Descrovi, In-plane 2D focusing of surface waves by ultrathin refractive structures, Opt. Lett. 39 (22), 6391–6394, (2014).

    Google Scholar 

  53. M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation Opt. Express 20, 6703 (2012).

    Google Scholar 

  54. E. Descrovi, E. Barakat, A. Angelini, P. Munzert, N. De Leo, L. Boarino, F. Giorgis and H. P. Herzig, Leakage radiation interference microscopy, Opt. Lett. 38 (17), 3374–3376, (2013).

    Google Scholar 

  55. J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, Digital wave-front measuring interferometry: some systematic error sources Appl. Opt. 22, 3421 (1983).

    Google Scholar 

  56. P. Hariharan, B. F. Oreb, and T. Eiju,Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm Appl. Opt. 26, 2504 (1987).

    Google Scholar 

  57. A. Berrier, M. Swillo, N. Le Thomas, R. Houdre’, and S. Anand, Bloch mode excitation in two-dimensional photonic crystals imaged by Fourier optics Phys. Rev. B 79, 165116 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Angelini .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Angelini, A. (2017). Bloch Surface Waves on A One Dimensional Photonic Crystal. In: Photon Management Assisted by Surface Waves on Photonic Crystals. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-319-50134-5_1

Download citation

Publish with us

Policies and ethics