Skip to main content

Bayesian Grouped Horseshoe Regression with Application to Additive Models

  • Conference paper
  • First Online:
AI 2016: Advances in Artificial Intelligence (AI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9992))

Included in the following conference series:

Abstract

The Bayesian horseshoe estimator is known for its robustness when handling noisy and sparse big data problems. This paper presents two extensions of the regular Bayesian horseshoe: (i) the grouped Bayesian horseshoe and (ii) the hierarchical Bayesian grouped horseshoe. The advantages of the proposed methods are their flexibility in handling grouped variables through extra shrinkage parameters at the group and within-group levels. We apply the proposed methods to the important class of additive models where group structures naturally exist, and we demonstrate that the grouped hierarchical Bayesian horseshoe has promising performance on both simulated and real data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Alcalá, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., Herrera, F.: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Multiple-Valued Logic Soft Comput. 17(2–3), 255–287 (2010)

    Google Scholar 

  2. Breheny, P., Huang, J.: Penalized methods for bi-level variable selection. Stat. Interface 2(3), 369–380 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Breiman, L.: Better subset regression using the nonnegative garrote. Technometrics 37(4), 373–384 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bühlmann, P., Geer, S.V.D.: Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer Science & Business Media, New York (2011)

    Book  MATH  Google Scholar 

  5. Carvalho, C.M., Polson, N.G., Scott, J.G.: Handling sparsity via the horseshoe. JMLR 5, 73–80 (2009)

    Google Scholar 

  6. Carvalho, C.M., Polson, N.G., Scott, J.G.: The horseshoe estimator for sparse signals. Biometrika 97(2), 465–480 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)

    Article  MATH  Google Scholar 

  9. Huang, J., Ma, S., Xie, H., Zhang, C.H.: A group bridge approach for variable selection. Biometrika 96(2), 339–355 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Makalic, E., Schmidt, D.F.: A simple sampler for the horseshoe estimator. IEEE Signal Process. Lett. 23(1), 179–182 (2016)

    Article  Google Scholar 

  11. Park, T., Casella, G.: The Bayesian lasso. J. Am. Stat. Assoc. 103(482), 681–686 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 68(1), 49–67 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhao, P., Rocha, G., Yu, B.: The composite absolute penalties family for grouped and hierarchical variable selection. Ann. Stat. 37(6A), 3468–3497 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zou, H.: The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 101(476), 1418–1429 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zemei Xu .

Editor information

Editors and Affiliations

Appendix: Full Conditional Distributions

Appendix: Full Conditional Distributions

The hierarchical specification of the complete model of the HBGHS is given in (7). By using the decomposition [10], the hierarchical representation becomes:

$$\begin{aligned} \begin{aligned} \mathbf {y}|\mathbf {X},\varvec{\beta },\sigma ^2&\sim \mathcal {N}(\mathbf {X}\varvec{\beta },\sigma ^2\mathbbm {1}_n) \\ \varvec{\beta }|\sigma ^2,\tau ^2,\lambda _1,\cdots ,\lambda _G,\delta _1,\cdots ,\delta _p&\sim \mathcal {N}(\varvec{0},\sigma ^2\tau ^2\mathbf {D}_{\varvec{\lambda }}\mathbf {D}_{\varvec{\delta }}) \\ \mathbf {D}_{\varvec{\lambda }}=\text {diag}(\lambda _{1}^2\mathbf {I}_{s_1},\cdots ,\lambda _{G}^2\mathbf {I}_{s_G})&,\quad \mathbf {D}_{\varvec{\delta }}=\text {diag}(\delta _1^2,\cdots ,\delta _p^2) \\ \lambda _g^2|t_g \sim \mathcal {IG}\left( \frac{1}{2},\frac{1}{t_g}\right)&,\ t_g \sim \mathcal {IG} \left( \frac{1}{2},1\right) ,\ g =1,\cdots ,G\\ \delta _j^2|c_j \sim \mathcal {IG}\left( \frac{1}{2},\frac{1}{c_j} \right)&, \ c_j \sim \mathcal {IG}\left( \frac{1}{2},1\right) , \ j=1,\cdots ,p\\ \tau ^2|v \sim \mathcal {IG}\left( \frac{1}{2},\frac{1}{v}\right)&,\ v \sim \mathcal {IG}\left( \frac{1}{2},1\right) \\ \sigma ^2&\sim \frac{1}{\sigma ^2}d\sigma ^2. \end{aligned} \end{aligned}$$

The full conditional distributions of \(\varvec{\beta }\), \(\sigma ^2\), \(\lambda _1^2,\cdots ,\lambda _G^2\), \(\delta _1^2,\cdots ,\delta _p^2\), \(\tau \) are:

$$\begin{aligned} \begin{aligned}&\varvec{\beta }|\sigma ^2,\tau ^2,\lambda _1^2,\cdots ,\lambda _G^2,\delta _1^2,\cdots ,\delta _p^2 \sim \mathcal {N} \left( \mathbf {A}^{-1}\mathbf {X}^T\mathbf {y},\sigma ^2\mathbf {A}^{-1}\right) , \quad \mathbf {A}= \mathbf {X}^T \mathbf {X}+(\tau ^2\mathbf {D}_{\varvec{\lambda }}\mathbf {D}_{\varvec{\delta }})^{-1}\\&\sigma ^2|\varvec{\beta },\tau ^2,\lambda _1^2,\cdots ,\lambda _G^2,\delta _1^2,\cdots ,\delta _p^2 \sim \mathcal {IG}\left( \frac{n-1+p}{2},\frac{(\mathbf {y}-\mathbf {X}\varvec{\beta })^T(\mathbf {y}-\mathbf {X}\varvec{\beta })+\varvec{\beta }^T(\tau ^2\mathbf {D}_{\varvec{\lambda }}\mathbf {D}_{\varvec{\delta }})^{-1}\varvec{\beta }}{2}\right) \\&\lambda _g^2|\varvec{\beta },\sigma ^2,\tau ^2,t_g,\delta _1^2,\cdots ,\delta _p^2 \sim \mathcal {IG}\left( \frac{s_g+1}{2},\frac{\varvec{\beta }_g^T(\mathbf {D}_{\varvec{\delta }_g})^{-1}\varvec{\beta }_g}{2\sigma ^2\tau ^2}+\frac{1}{t_g}\right) ,\ t_g|\lambda _g^2 \sim \mathcal {IG}\left( 1,\frac{1}{\lambda _g^2}+1\right) \\&\delta _j^2 |\varvec{\beta },\sigma ^2,\tau ^2,\lambda _1^2,\cdots ,\lambda _G^2,c_j \sim \mathcal {IG}\left( 1,\frac{\beta _j^2}{2\sigma ^2\tau ^2\lambda _{gj}^2}+\frac{1}{c_j} \right) ,\ c_j|\delta _j^2 \sim \mathcal {IG} \left( 1,\frac{1}{\delta _j^2}+1\right) \\&\tau ^2|\varvec{\beta },\sigma ^2,\tau ^2,\lambda _1^2,\cdots ,\lambda _G^2,\delta _1^2,\cdots ,\delta _p^2,v \sim \mathcal {IG}\left( \frac{p+1}{2},\frac{\varvec{\beta }^T(\mathbf {D}_{\varvec{\lambda }}\mathbf {D}_{\varvec{\delta }})^{-1}\varvec{\beta }}{2\sigma ^2}+\frac{1}{v}\right) \\&v|\tau ^2 \sim \mathcal {IG}\left( 1,\frac{1}{\tau ^2}+1\right) . \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Xu, Z., Schmidt, D.F., Makalic, E., Qian, G., Hopper, J.L. (2016). Bayesian Grouped Horseshoe Regression with Application to Additive Models. In: Kang, B.H., Bai, Q. (eds) AI 2016: Advances in Artificial Intelligence. AI 2016. Lecture Notes in Computer Science(), vol 9992. Springer, Cham. https://doi.org/10.1007/978-3-319-50127-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50127-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50126-0

  • Online ISBN: 978-3-319-50127-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics