Skip to main content

CPF: Concept Profiling Framework for Recurring Drifts in Data Streams

  • Conference paper
  • First Online:
AI 2016: Advances in Artificial Intelligence (AI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9992))

Included in the following conference series:

Abstract

We propose the Concept Profiling Framework (CPF), a meta-learner that uses a concept drift detector and a collection of classification models to perform effective classification on data streams with recurrent concept drifts, through relating models by similarity of their classifying behaviour. We introduce a memory-efficient version of our framework and show that it can operate faster and with less memory than a naïve implementation while achieving similar accuracy. We compare this memory-efficient version of CPF to a state-of-the-art meta-learner made to handle recurrent drift and show that we can regularly achieve improved classification accuracy along with runtime and memory use. We provide results from testing on synthetic and real-world datasets to prove CPF’s value in classifying data streams with recurrent concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Tsymbal, A.: The problem of concept drift: definitions and related work. Technical report TCD-CS-2004-15, Trinity College Dublin (2004)

    Google Scholar 

  2. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23, 69–101 (1996)

    Article  Google Scholar 

  3. Yang, Y., Wu, X., Zhu, X.: Mining in anticipation for concept change: proactive-reactive prediction in data streams. Data Mining Knowl. Disc. 13, 261–289 (2006)

    Article  MathSciNet  Google Scholar 

  4. Gomes, J.B., Sousa, P.A., Menasalvas, E.: Tracking recurrent concepts using context. Intell. Data Anal. 16, 803–825 (2012)

    Article  Google Scholar 

  5. Gonçalves, P.M., De Barros, R.S.M.: RCD: a recurring concept drift framework. Pattern Recogn. Lett. 34, 1018–1025 (2013)

    Article  Google Scholar 

  6. Gama, J.A., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46, 1–37 (2014)

    Article  MATH  Google Scholar 

  7. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 71–80. ACM (2000)

    Google Scholar 

  8. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–30 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28645-5_29

    Chapter  Google Scholar 

  10. Baena-Garcıa, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavalda, R., Morales-Bueno, R.: Early drift detection method. In: Fourth International Workshop on Knowledge Discovery from Data Streams, vol. 6, pp. 77–86 (2006)

    Google Scholar 

  11. Gama, J., Kosina, P.: Tracking recurring concepts with meta-learners. In: Lopes, L.S., Lau, N., Mariano, P., Rocha, L.M. (eds.) EPIA 2009. LNCS (LNAI), vol. 5816, pp. 423–434. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04686-5_35

    Chapter  Google Scholar 

  12. Brzezinski, D., Stefanowski, J.: Reacting to different types of concept drift: the accuracy updated ensemble algorithm. IEEE Trans. Neural Netw. Learn.Syst. 25, 81–94 (2014)

    Article  Google Scholar 

  13. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 97–106. ACM (2001)

    Google Scholar 

  14. Kawala, F., Douzal-Chouakria, A., Gaussier, E., Dimert, E.: Prédictions d’activité dans les réseaux sociaux en ligne. In: 4ième conférence sur les modèles et l’analyse des réseaux: Approches mathématiques et informatiques, pp. 16–28 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Anderson, R., Koh, Y.S., Dobbie, G. (2016). CPF: Concept Profiling Framework for Recurring Drifts in Data Streams. In: Kang, B.H., Bai, Q. (eds) AI 2016: Advances in Artificial Intelligence. AI 2016. Lecture Notes in Computer Science(), vol 9992. Springer, Cham. https://doi.org/10.1007/978-3-319-50127-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50127-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50126-0

  • Online ISBN: 978-3-319-50127-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics