Skip to main content

Energy Harvesting Smart Textiles

  • Chapter
  • First Online:
Smart Textiles

Abstract

The ever-increasing population of the world is putting a significant demand on the need for multifunctional electronic devices and electricity to power them. This growing demand has led to an enhanced focus on the development of energy harvesting techniques based on renewable and ambient sources. Although materials having unique properties such as photovoltaic, piezoelectric and triboelectric have been known for a long time and have been utilized usually in the form of thin-film structures, their utilization in the form of textile structures for energy harvesting is a relatively new area of research. This chapter will focus on the recent advances in the area of photovoltaic, piezoelectric and triboelectric energy-generating textile structures and the fundamentals of these unique properties, production methods and textile-based energy storage. Finally, expected future trends in the fabrication and application of textile-based energy harvesting and storage will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warner, S.B.: Fiber Science. Prentice Hall Englewood Cliffs, New Jersey (1995)

    Google Scholar 

  2. Singh, M.K.: Flexible Photovoltaic Textiles for Smart Applications. INTECH Open Access Publisher, Rijeka (2011)

    Google Scholar 

  3. Reuter, M., Brendle, W., Tobail, O., Werner, J.H.: 50\(\upmu \)m thin solar cells with 17.0% efficiency. Sol. Energy Mater. Sol. Cells 93(6), 704–706 (2009)

    Article  Google Scholar 

  4. Wang, A., Zhao, J., Wenham, S., Green, M.: 21.5% efficient thin silicon solar cell. Prog. Photovoltaics Res. Appl. 4(1), 55–58 (1996)

    Article  Google Scholar 

  5. Chopra, K., Paulson, P., Dutta, V.: Thin-film solar cells: an overview. Prog. Photovolt. Res. Appl. 12(2–3), 69–92 (2004)

    Article  Google Scholar 

  6. Günes, S., Neugebauer, H., Sariciftci, N.S.: Conjugated polymer-based organic solar cells. Chem. Rev. 107(4), 1324–1338 (2007)

    Article  Google Scholar 

  7. Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., Yang, Y.: High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4(11), 864–868 (2005)

    Article  Google Scholar 

  8. Sariciftci, N.S.: Polymeric photovoltaic materials. Curr. Opin Solid State Mater. Sci. 4(4), 373–378 (1999)

    Article  Google Scholar 

  9. Ameri, T., Dennler, G., Waldauf, C., Denk, P., Forberich, K., Scharber, M.C., Brabec, C.J., Hingerl, K.: Realization, characterization, and optical modeling of inverted bulk-heterojunction organic solar cells. J. Appl. Phys. 103(8), 084506 (2008)

    Article  Google Scholar 

  10. Liang, Y., Wu, Y., Feng, D., Tsai, S.T., Son, H.J., Li, G., Yu, L.: Development of new semiconducting polymers for high performance solar cells. J. Am. Chem. Soc. 131(1), 56–57 (2008)

    Article  Google Scholar 

  11. Gerischer, H., Michel-Beyerle, M., Rebentrost, F., Tributsch, H.: Sensitization of charge injection into semiconductors with large band gap. Electrochim. Acta 13(6), 1509–1515 (1968)

    Article  Google Scholar 

  12. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H.: Dye-sensitized solar cells. Chem. Rev. 110(11), 6595–6663 (2010)

    Article  Google Scholar 

  13. Grätzel, M.: Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 44(20), 6841–6851 (2005)

    Article  Google Scholar 

  14. Wang, X., Zhi, L., Müllen, K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)

    Article  Google Scholar 

  15. Calogero, G., Calandra, P., Irrera, A., Sinopoli, A., Citro, I., Di Marco, G.: A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells. Energy Environ. Sci. 4(5), 1838–1844 (2011)

    Article  Google Scholar 

  16. Wang, P., Zakeeruddin, S.M., Comte, P., Exnar, I., Grätzel, M.: Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. J. Am. Chem. Soc. 125(5), 1166–1167 (2003)

    Article  Google Scholar 

  17. Bach, U., Lupo, D., Comte, P., Moser, J., Weissörtel, F., Salbeck, J., Spreitzer, H., Grätzel, M.: Solid-state dye-sensitized mesoporous tio2 solar cells with high photon-to-electron conversion efficiencies. Nature 395(6702), 583–585 (1998)

    Article  Google Scholar 

  18. Han, L., Fukui, A., Chiba, Y., Islam, A., Komiya, R., Fuke, N., Koide, N., Yamanaka, R., Shimizu, M.: Integrated dye-sensitized solar cell module with conversion efficiency of 8.2%. Appl. Phys. Lett. 94(1), 013305 (2009)

    Article  Google Scholar 

  19. Law, M., Greene, L.E., Johnson, J.C., Saykally, R., Yang, P.: Nanowire dye-sensitized solar cells. Nature Mater. 4(6), 455–459 (2005)

    Article  Google Scholar 

  20. Horiuchi, T., Miura, H., Sumioka, K., Uchida, S.: High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J. Am. Chem. Soc. 126(39), 12218–12219 (2004)

    Article  Google Scholar 

  21. Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N., Han, L.: Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn. J. Appl. Phys. 45(7L), L638 (2006)

    Article  Google Scholar 

  22. Brown, A.S., Green, M.A.: Detailed balance limit for the series constrained two terminal tandem solar cell. Phys. E 14(1), 96–100 (2002)

    Article  Google Scholar 

  23. Bremner, S., Levy, M., Honsberg, C.B.: Analysis of tandem solar cell efficiencies under am 1.5g spectrum using a rapid flux calculation method. Prog. Photovolt. Res. Appl. 16(3), 225–233 (2008)

    Article  Google Scholar 

  24. Bertness, K., Kurtz, S.R., Friedman, D., Kibbler, A., Kramer, C., Olson, J.: 29.5%-efficient gainp/gaas tandem solar cells. Appl. Phys. Lett. 65(8), 989–991 (1994)

    Article  Google Scholar 

  25. Gilot, J., Wienk, M.M., Janssen, R.A.: Double and triple junction polymer solar cells processed from solution. Appl. Phys. Lett. 90(14), 143512 (2007)

    Article  Google Scholar 

  26. Kim, S.S., Na, S.I., Jo, J., Tae, G., Kim, D.Y.: Efficient polymer solar cells fabricated by simple brush painting. Adv. Mater. 19(24), 4410–4415 (2007)

    Article  Google Scholar 

  27. Dennler, G., Prall, H.J.R., Koeppe, R., Egginger, M., Autengruber, R., Sariciftci, N.S.: Enhanced spectral coverage in tandem organic solar cells. Appl. Phys. Lett. 89(7), 73502–73502 (2006)

    Article  Google Scholar 

  28. Wenger, S., Seyrling, S., Tiwari, A.N., Grätzel, M.: Fabrication and performance of a monolithic dye-sensitized tio2/cu (in, ga) se2 thin film tandem solar cell. Appl. Phys. Lett. 94(17), 173508 (2009)

    Article  Google Scholar 

  29. King, R., Law, D., Edmondson, K., Fetzer, C., Kinsey, G., Yoon, H., Sherif, R., Karam, N.: 40% efficient metamorphic gainp/gainas/ge multijunction solar cells. Applied physics letters 90(18), 183516–183900 (2007)

    Article  Google Scholar 

  30. King, R., Karam, N., Ermer, J., Haddad, M., Colter, P., Isshiki, T., Yoon, H., Cotal, H., Joslin, D., Krut, D., et al.: Next-generation, high-efficiency iii-v multijunction solar cells. In: IEEE Conference Record of the Twenty-Eighth, Photovoltaic Specialists Conference, 2000, pp. 998–1001. IEEE (2000)

    Google Scholar 

  31. Günes, S., Sariciftci, N.S.: Hybrid solar cells. Inorg. Chim. Acta 361(3), 581–588 (2008)

    Article  Google Scholar 

  32. van Hal, P.A., Wienk, M.M., Kroon, J.M., Verhees, W.J., Slooff, L.H., van Gennip, W.J., Jonkheijm, P., Janssen, R.A.: Photoinduced electron transfer and photovoltaic response of a mdmo-ppv: Tio2 bulk-heterojunction. Adv. Mater. 15(2), 118–121 (2003)

    Article  Google Scholar 

  33. Mcdonald, S.A., Konstantatos, G., Zhang, S., Cyr, P.W., Klem, E.J., Levina, L., Sargent, E.H.: Solution-processed pbs quantum dot infrared photodetectors and photovoltaics. Adv. Mater. 4(2), 138–142 (2005)

    Google Scholar 

  34. Zhang, S., Cyr, P., McDonald, S., Konstantatos, G., Sargent, E.: Enhanced infrared photovoltaic efficiency in pbs nanocrystal/semiconducting polymer composites: 600-fold increase in maximum power output via control of the ligand barrier. Appl. Phys. Lett. 87(23), 233101 (2005)

    Article  Google Scholar 

  35. Beek, W.J., Wienk, M.M., Janssen, R.A.: Hybrid solar cells from regioregular polythiophene and zno nanoparticles. Adv. Funct. Mater. 16(8), 1112–1116 (2006)

    Article  Google Scholar 

  36. Olson, D.C., Piris, J., Collins, R.T., Shaheen, S.E., Ginley, D.S.: Hybrid photovoltaic devices of polymer and zno nanofiber composites. Thin Solid Films 496(1), 26–29 (2006)

    Article  Google Scholar 

  37. Greenham, N.C., Peng, X., Alivisatos, A.P.: Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 54(24), 17628 (1996)

    Article  Google Scholar 

  38. Ginger, D., Greenham, N.: Photoinduced electron transfer from conjugated polymers to cdse nanocrystals. Phys. Rev. B 59(16), 10622 (1999)

    Article  Google Scholar 

  39. Huynh, W.U., Dittmer, J.J., Alivisatos, A.P.: Hybrid nanorod-polymer solar cells. Science 295(5564), 2425–2427 (2002)

    Article  Google Scholar 

  40. Gur, I., Fromer, N.A., Geier, M.L., Alivisatos, A.P.: Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310(5747), 462–465 (2005)

    Article  Google Scholar 

  41. Arici, E., Sariciftci, N.S., Meissner, D.: Hybrid solar cells based on nanoparticles of cuins2 in organic matrices. Adv. Funct. Mater. 13(2), 165–171 (2003)

    Article  Google Scholar 

  42. Curie, J., Curie, P.: Development par compression de lelectricite pollaire dans les cristaux hemledres a faces inclinees. Bulletin (4) (1880)

    Google Scholar 

  43. Lippman, G.: Principe de la conservation de l’électricité. Ann. de chimie et de Phys. 24, 381–394 (1881)

    MATH  Google Scholar 

  44. Nicolson, A.M.: The piezo electric effect in the composite rochelle salt crystal. Trans. Am. Inst. Electr. Eng. 38(2), 1467–1493 (1919)

    Article  Google Scholar 

  45. Yamaguchi, S.: Surface electric fields of tourmaline. Appl. Phys. A 31(4), 183–185 (1983)

    Article  Google Scholar 

  46. Fukada, E.: Piezoelectricity of wood. J. Phys. Soc. Jpn. 10(2), 149–154 (1955)

    Article  Google Scholar 

  47. Bazhenov, V.: Piezoelectric properties of wood

    Google Scholar 

  48. Fukada, E.: On the piezoelectric effect of silk fibers. J. Phys. Soc. Jpn. 11, 1301 (1956)

    Article  Google Scholar 

  49. Fukada, E., Yasuda, I.: On the piezoelectric effect of bone. J. Phys. Soc. Jpn. 12(10), 1158–1162 (1957)

    Article  Google Scholar 

  50. Duchesne, J., Depireux, J., Bertinchamps, A., Cornet, N., Van der Kaa, J.: Thermal and electrical properties of nucleic acids and proteins. Nature 188, 405–406 (1960)

    Article  Google Scholar 

  51. Fukada, E., Yasuda, I.: Piezoelectric effects in collagen. Jpn. J. Appl. Phys. 3(2), 117 (1964)

    Article  Google Scholar 

  52. Fukada, E., Ando, Y.: Piezoelectricity in oriented dna films. J. Polym. Sci. Part A-2 Polym. Phys. 10(3), 565–567 (1972)

    Article  Google Scholar 

  53. Adachi, M., Kimura, T., Miyamoto, W., Chen, Z., Kawabata, A.: Dielectric, elastic and piezoelectric properties of La\(_3\)Ga\(_{5}\)SiO\(_{14}\) (langasite) single crystals. J. Korean Phys. Soc. 32, S1274–S1277 (1998)

    Google Scholar 

  54. Shirane, G., Hoshino, S., Suzuki, K.: X-ray study of the phase transition in lead titanate. Phys. Rev. 80(6), 1105 (1950)

    Article  Google Scholar 

  55. Edelman, S., Jones, E., Smith, E.R.: Some developments in vibration measurement. J. Acoust. Soc. Am. 27(4), 728–734 (1955)

    Article  Google Scholar 

  56. Shirane, G., Suzuki, K.: Crystal structure of pb (zr-ti) o_3. J. Phys. Soc. Jpn. 7(3), 333 (1952)

    Article  Google Scholar 

  57. Sawaguchi, E.: Ferroelectricity versus antiferroelectricity in the solid solutions of pbzro3 and pbtio3. J. Phys. Soc. Jpn. 8(5), 615–629 (1953)

    Article  Google Scholar 

  58. Jaffe, B., Roth, R., Marzullo, S.: Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J. Appl. Phys. 25(6), 809–810 (1954)

    Article  Google Scholar 

  59. Egerton, L., Dillon, D.M.: Piezoelectric and dielectric properties of ceramics in the system potassiumsodium niobate. J. Am. Ceram. Soc. 42(9), 438–442 (1959)

    Article  Google Scholar 

  60. Weis, R., Gaylord, T.: Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A 37(4), 191–203 (1985)

    Article  Google Scholar 

  61. Smith, R., Welsh, F.: Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate. J. Appl. Phys. 42(6), 2219–2230 (1971)

    Article  Google Scholar 

  62. Kawai, H.: The piezoelectricity of poly (vinylidene fluoride). Jpn. J. Appl. Phys. 8(7), 975 (1969)

    Article  Google Scholar 

  63. Nalwa, H.S.: Ferroelectric Polymers: Chemistry: Physics, and Applications. CRC Press, Boca Raton (1995)

    Google Scholar 

  64. Harrison, J., Ounaies, Z.: Piezoelectric Polymers. Wiley Online Library, New York (2002)

    Google Scholar 

  65. Qi, Y., McAlpine, M.C.: Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ. Sci. 3(9), 1275–1285 (2010)

    Article  Google Scholar 

  66. Roundy, S., Wright, P.K., Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26(11), 1131–1144 (2003)

    Article  Google Scholar 

  67. Swallow, L., Luo, J., Siores, E., Patel, I., Dodds, D.: A piezoelectric fibre composite based energy harvesting device for potential wearable applications. Smart Mater. Struct. 17(2), 025017 (2008)

    Article  Google Scholar 

  68. Patel, I., Siores, E., Shah, T.: Utilisation of smart polymers and ceramic based piezoelectric materials for scavenging wasted energy. Sens. Actuators Phys. 159(2), 213–218 (2010)

    Article  Google Scholar 

  69. Berlincourt, D.: Piezoelectric ceramics characteristics and applications. J. Acoust. Soc. Am. 68(S1), S40 (1980)

    Article  Google Scholar 

  70. Tanaka, T.: Piezoelectric devices in Japan. Ferroelectrics 40(1), 167–187 (1982)

    Article  Google Scholar 

  71. Tressler, J.F., Newnham, R.E., Hughes, W.J.: Capped ceramic underwater sound projector: the cymbal transducer. J. Acoust. Soc. Am. 105(2), 591–600 (1999)

    Article  Google Scholar 

  72. Woollett, R.: Basic problems caused by depth and size constraints in low-frequency underwater transducers. J. Acoust. Soc. Am. 65(S1), S126–S126 (1979)

    Article  Google Scholar 

  73. Conley, J.K., Kokonaski, W., Parrella, M.J., Machacek, S.L.: Piezo speaker and installation method for laptop personal computer and other multimedia applications (June 10 1997) US Patent 5,638,456

    Google Scholar 

  74. Sinelnikov, Y.: Dual-mode piezocomposite ultrasonic transducer (Nov 2011) WO Patent App. PCT/US2011/000,910

    Google Scholar 

  75. Grzybowski, B.A., Winkleman, A., Wiles, J.A., Brumer, Y., Whitesides, G.M.: Electrostatic self-assembly of macroscopic crystals using contact electrification. Nat. Mater. 2(4), 241–245 (2003)

    Article  Google Scholar 

  76. Pai, D.M., Springett, B.E.: Physics of electrophotography. Rev. Mod. Phys. 65(1), 163 (1993)

    Article  Google Scholar 

  77. Zhu, G., Peng, B., Chen, J., Jing, Q., Wang, Z.L.: Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 14, 126–138 (2015)

    Article  Google Scholar 

  78. Wang, Z.L.: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013)

    Article  Google Scholar 

  79. LináWang, Z.: Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives. Faraday Discus. 176, 447–458 (2014)

    Article  Google Scholar 

  80. Chittibabu, K., Eckert, R., Gaudiana, R., Li, L., Montello, A., Montello, E., Wormser, P.: A flexible fiber core having an outer surface, a photosensitized nanomatrix particle applied to the outer surface, a protective layer, an electroconductive metal and a counter electrode (July 5 2005) US Patent 6,913,713

    Google Scholar 

  81. Kuraseko, H., Nakamura, T., Toda, S., Koaizawa, H., Jia, H., Kondo, M.: Development of flexible fiber-type poly-si solar cell. In: IEEE 4th World Conference on Photovoltaic Energy Conversion, Conference Record of the 2006, vol. 2, pp. 1380–1383. IEEE (2006)

    Google Scholar 

  82. OConnor, B., Pipe, K.P., Shtein, M.: Fiber based organic photovoltaic devices. Appl. Phys. Lett. 92(19), 193306 (2008)

    Article  Google Scholar 

  83. Liu, J., Namboothiry, M.A., Carroll, D.L.: Fiber-based architectures for organic photovoltaics. Appl. Phys. Lett. 90(6), 063501 (2007)

    Article  Google Scholar 

  84. Bedeloglu, A.C., Demir, A., Bozkurt, Y., Sariciftci, N.S.: A photovoltaic fiber design for smart textiles. Text. Res. J. 80(11), 1065–1074 (2010)

    Article  Google Scholar 

  85. Toivola, M., Ferenets, M., Lund, P., Harlin, A.: Photovoltaic fiber. Thin Solid Films 517(8), 2799–2802 (2009)

    Article  Google Scholar 

  86. Ramier, J., Plummer, C., Leterrier, Y., Månson, J.A., Eckert, B., Gaudiana, R.: Mechanical integrity of dye-sensitized photovoltaic fibers. Renew. Energy 33(2), 314–319 (2008)

    Article  Google Scholar 

  87. Grätzel, M.: Dye-sensitized solar cells. J. Photochem. Photobiol. C 4(2), 145–153 (2003)

    Article  Google Scholar 

  88. Li, B., Wang, L., Kang, B., Wang, P., Qiu, Y.: Review of recent progress in solid-state dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 90(5), 549–573 (2006)

    Article  Google Scholar 

  89. Fukada, E.: Piezoelectric properties of organic polymers. Ann. N. Y. Acad. Sci. 238(1), 7–25 (1974)

    Article  Google Scholar 

  90. Kepler, R., Anderson, R.: Piezoelectricity in polymers. Crit. Rev. Solid State Mater. Sci. 9(4), 399–447 (1980)

    Article  Google Scholar 

  91. Wang, T.T., Herbert, J.M., Glass, A.M.: The applications of ferroelectric polymers. Blackie and Son, Bishopbriggs, Glasgow G 64 2 NZ, UK (1988)

    Google Scholar 

  92. Fukada, E.: History and recent progress in piezoelectric polymers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1277–1290 (2000)

    Article  Google Scholar 

  93. Broadhurst, M., Davis, G., McKinney, J., Collins, R.: Piezoelectricity and pyroelectricity in polyvinylidene fluoridea model. J. Appl. Phys. 49(10), 4992–4997 (1978)

    Article  Google Scholar 

  94. Lovinger, A.J.: Poly (vinylidene fluoride). In: Developments in Crystalline Polymers-1, pp. 195–273. Springer (1982)

    Google Scholar 

  95. Gallantree, H.: Review of transducer applications of polyvinylidene fluoride. IEE Proc. I (Solid-State and Electron Devices) 130(5), 219–224 (1983)

    Article  Google Scholar 

  96. Tashiro, K.: Crystal structure and phase transition of pvdf and related copolymers. Plast. Eng. New York 28, 63 (1995)

    Google Scholar 

  97. Martins, P., Lopes, A., Lanceros-Mendez, S.: Electroactive phases of poly (vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39(4), 683–706 (2014)

    Article  Google Scholar 

  98. Soin, N., Boyer, D., Prashanthi, K., Sharma, S., Narasimulu, A., Luo, J., Shah, T., Siores, E., Thundat, T.: Exclusive self-aligned \(\beta \)-phase pvdf films with abnormal piezoelectric coefficient prepared via phase inversion. Chem. Commun. 51(39), 8257–8260 (2015)

    Article  Google Scholar 

  99. Ambrosy, A., Holdik, K.: Piezoelectric pvdf films as ultrasonic transducers. J. Phys. E: Sci. Instrum. 17(10), 856 (1984)

    Article  Google Scholar 

  100. Ramos, M.M., Correia, H.M., Lanceros-Mendez, S.: Atomistic modelling of processes involved in poling of pvdf. Comput. Mater. Sci. 33(1), 230–236 (2005)

    Article  Google Scholar 

  101. Bhardwaj, N., Kundu, S.C.: Electrospinning: a fascinating fiber fabrication technique. Biotech. Adv. 28(3), 325–347 (2010)

    Article  Google Scholar 

  102. Chen, X., Xu, S., Yao, N., Shi, Y.: 1.6 v nanogenerator for mechanical energy harvesting using pzt nanofibers. Nano Lett. 10(6), 2133–2137 (2010)

    Article  Google Scholar 

  103. Chang, J., Dommer, M., Chang, C., Lin, L.: Piezoelectric nanofibers for energy scavenging applications. Nano Energy 1(3), 356–371 (2012)

    Article  Google Scholar 

  104. Shi, X., Zhou, W., Ma, D., Ma, Q., Bridges, D., Ma, Y., Hu, A.: Electrospinning of nanofibers and their applications for energy devices. J. Nanomater. 2015, 122 (2015)

    Google Scholar 

  105. Qin, X.H., Wang, S.Y.: Filtration properties of electrospinning nanofibers. J. Appl. Polym. Sci. 102(2), 1285–1290 (2006)

    Article  Google Scholar 

  106. Gopal, R., Kaur, S., Ma, Z., Chan, C., Ramakrishna, S., Matsuura, T.: Electrospun nanofibrous filtration membrane. J. Membr. Sci. 281(1), 581–586 (2006)

    Article  Google Scholar 

  107. Heikkilä, P., Taipale, A., Lehtimäki, M., Harlin, A.: Electrospinning of polyamides with different chain compositions for filtration application. Polym. Eng. Sci. 48(6), 1168–1176 (2008)

    Article  Google Scholar 

  108. Yoshimoto, H., Shin, Y., Terai, H., Vacanti, J.: A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24(12), 2077–2082 (2003)

    Article  Google Scholar 

  109. Yang, F., Murugan, R., Wang, S., Ramakrishna, S.: Electrospinning of nano/micro scale poly (l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26(15), 2603–2610 (2005)

    Article  Google Scholar 

  110. Lannutti, J., Reneker, D., Ma, T., Tomasko, D., Farson, D.: Electrospinning for tissue engineering scaffolds. Mater. Sci. Eng. C 27(3), 504–509 (2007)

    Article  Google Scholar 

  111. Sill, T.J., von Recum, H.A.: Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13), 1989–2006 (2008)

    Article  Google Scholar 

  112. Chang, C., Tran, V.H., Wang, J., Fuh, Y.K., Lin, L.: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10(2), 726–731 (2010)

    Article  Google Scholar 

  113. Laudenslager, M.J., Scheffler, R.H., Sigmund, W.M.: Electrospun materials for energy harvesting, conversion, and storage: a review. Pure Appl. Chem. 82(11), 2137–2156 (2010)

    Article  Google Scholar 

  114. Wu, W., Bai, S., Yuan, M., Qin, Y., Wang, Z.L., Jing, T.: Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS Nano 6(7), 6231–6235 (2012)

    Article  Google Scholar 

  115. Fang, J., Niu, H., Wang, H., Wang, X., Lin, T.: Enhanced mechanical energy harvesting using needleless electrospun poly (vinylidene fluoride) nanofibre webs. Energy Environ. Sci. 6(7), 2196–2202 (2013)

    Article  Google Scholar 

  116. Wang, X., Song, J., Liu, J., Wang, Z.L.: Direct-current nanogenerator driven by ultrasonic waves. Science 316(5821), 102–105 (2007)

    Article  Google Scholar 

  117. Qin, Y., Wang, X., Wang, Z.L.: Microfibre-nanowire hybrid structure for energy scavenging. Nature 451(7180), 809–813 (2008)

    Article  Google Scholar 

  118. Yang, R., Qin, Y., Li, C., Zhu, G., Wang, Z.L.: Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett. 9(3), 1201–1205 (2009)

    Article  Google Scholar 

  119. Yang, R., Qin, Y., Dai, L., Wang, Z.L.: Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4(1), 34–39 (2009)

    Article  Google Scholar 

  120. Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., Wang, Z.L.: Self-powered nanowire devices. Nat. Nanotechnol. 5(5), 366–373 (2010)

    Article  Google Scholar 

  121. Chang, J., Lin, L.: Large array electrospun pvdf nanogenerators on a flexible substrate. In: 2011 16th International, Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), pp. 747–750. IEEE (2011)

    Google Scholar 

  122. Fuh, Y.K., Ye, J.C., Chen, P.C., Huang, Z.M.: A highly flexible and substrate-independent self-powered deformation sensor based on massively aligned piezoelectric nano-/microfibers. J. Mater. Chem. A 2(38), 16101–16106 (2014)

    Article  Google Scholar 

  123. Fang, J., Wang, X., Lin, T.: Electrical power generator from randomly oriented electrospun poly (vinylidene fluoride) nanofibre membranes. J. Mater. Chem. 21(30), 11088–11091 (2011)

    Article  Google Scholar 

  124. Zheng, J., He, A., Li, J., Han, C.C.: Polymorphism control of poly (vinylidene fluoride) through electrospinning. Macromol. Rapid Commun. 28(22), 2159–2162 (2007)

    Article  Google Scholar 

  125. Ribeiro, C., Sencadas, V., Ribelles, J.L.G., Lanceros-Méndez, S.: Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly (vinylidene fluoride) electrospun membranes. Soft Mater. 8(3), 274–287 (2010)

    Article  Google Scholar 

  126. Cui, N., Wu, W., Zhao, Y., Bai, S., Meng, L., Qin, Y., Wang, Z.L.: Magnetic force driven nanogenerators as a noncontact energy harvester and sensor. Nano Lett. 12(7), 3701–3705 (2012)

    Article  Google Scholar 

  127. Magniez, K., Krajewski, A., Neuenhofer, M., Helmer, R.: Effect of drawing on the molecular orientation and polymorphism of melt-spun polyvinylidene fluoride fibers: Toward the development of piezoelectric force sensors. J. Appl. Polym. Sci. 129(5), 2699–2706 (2013)

    Article  Google Scholar 

  128. Nilsson, E., Lund, A., Jonasson, C., Johansson, C., Hagström, B.: Poling and characterization of piezoelectric polymer fibers for use in textile sensors. Sens. Actuators A Phys. 201, 477–486 (2013)

    Article  Google Scholar 

  129. Soin, N., Shah, T.H., Anand, S.C., Geng, J., Pornwannachai, W., Mandal, P., Reid, D., Sharma, S., Hadimani, R.L., Bayramol, D.V., et al.: Novel 3-d spacer all fibre piezoelectric textiles for energy harvesting applications. Energy Environ. Sci. 7(5), 1670–1679 (2014)

    Article  Google Scholar 

  130. Hadimani, R.L., Bayramol, D.V., Sion, N., Shah, T., Qian, L., Shi, S., Siores, E.: Continuous production of piezoelectric pvdf fibre for e-textile applications. Smart Mater. Struct. 22(7), 075017 (2013)

    Article  Google Scholar 

  131. Zeng, W., Tao, X.M., Chen, S., Shang, S., Chan, H.L.W., Choy, S.H.: Highly durable all-fiber nanogenerator for mechanical energy harvesting. Energy Environ. Sci. 6(9), 2631–2638 (2013)

    Article  Google Scholar 

  132. Wang, Z.L., Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006)

    Article  Google Scholar 

  133. Zhang, Q., Dandeneau, C.S., Zhou, X., Cao, G.: Zno nanostructures for dye-sensitized solar cells. Adv. Mater. 21(41), 4087–4108 (2009)

    Article  Google Scholar 

  134. Ko, Y.H., Yu, J.S.: Tunable growth of urchin-shaped zno nanostructures on patterned transparent substrates. Cryst. Eng. Commun. 14(18), 5824–5829 (2012)

    Article  Google Scholar 

  135. Ko, Y.H., Kim, M.S., Park, W., Yu, J.S.: Well-integrated zno nanorod arrays on conductive textiles by electrochemical synthesis and their physical properties. Nanoscale Res. Lett. 8(1), 1–8 (2013)

    Article  Google Scholar 

  136. Gullapalli, H., Vemuru, V.S., Kumar, A., Botello-Mendez, A., Vajtai, R., Terrones, M., Nagarajaiah, S., Ajayan, P.M.: Flexible piezoelectric zno-paper nanocomposite strain sensor. Small 6(15), 1641–1646 (2010)

    Article  Google Scholar 

  137. Khan, A., Hussain, M., Nur, O., Willander, M., Broitman, E.: Analysis of direct and converse piezoelectric responses from zinc oxide nanowires grown on a conductive fabric. Physica Status Solidi (a) 212(3), 579–584 (2015)

    Article  Google Scholar 

  138. Cui, N., Liu, J., Gu, L., Bai, S., Chen, X., Qin, Y.: Wearable triboelectric generator for powering the portable electronic devices. ACS Appl. Mater. Interf. 7(33), 18225–18230 (2015)

    Article  Google Scholar 

  139. Ko, Y.H., Nagaraju, G., Yu, J.S.: Multi-stacked pdms-based triboelectric generators with conductive textile for efficient energy harvesting. RSC Adv. 5(9), 6437–6442 (2015)

    Article  Google Scholar 

  140. Seung, W., Gupta, M.K., Lee, K.Y., Shin, K.S., Lee, J.H., Kim, T.Y., Kim, S., Lin, J., Kim, J.H., Kim, S.W.: Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 9(4), 3501–3509 (2015)

    Article  Google Scholar 

  141. Lee, S., Ko, W., Oh, Y., Lee, J., Baek, G., Lee, Y., Sohn, J., Cha, S., Kim, J., Park, J., et al.: Triboelectric energy harvester based on wearable textile platforms employing various surface morphologies. Nano Energy 12, 410–418 (2015)

    Article  Google Scholar 

  142. Kim, K.N., Chun, J., Kim, J.W., Lee, K.Y., Park, J.U., Kim, S.W., Wang, Z.L., Baik, J.M.: Highly stretchable 2d fabrics for wearable triboelectric nanogenerator under harsh environments. ACS Nano 9(6), 6394–6400 (2015)

    Article  Google Scholar 

  143. Hu, L., Wu, H., La Mantia, F., Yang, Y., Cui, Y.: Thin, flexible secondary li-ion paper batteries. Acs Nano 4(10), 5843–5848 (2010)

    Article  Google Scholar 

  144. Yu, G., Hu, L., Vosgueritchian, M., Wang, H., Xie, X., McDonough, J.R., Cui, X., Cui, Y., Bao, Z.: Solution-processed graphene/mno2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett. 11(7), 2905–2911 (2011)

    Article  Google Scholar 

  145. Kwon, Y.H., Woo, S.W., Jung, H.R., Yu, H.K., Kim, K., Oh, B.H., Ahn, S., Lee, S.Y., Song, S.W., Cho, J., et al.: Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv. Mater. 24(38), 5192–5197 (2012)

    Article  Google Scholar 

  146. Pu, X., Li, L., Song, H., Du, C., Zhao, Z., Jiang, C., Cao, G., Hu, W., Wang, Z.L.: A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater. 27(15), 2472–2478 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derman Vatansever Bayramol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bayramol, D.V., Soin, N., Shah, T., Siores, E., Matsouka, D., Vassiliadis, S. (2017). Energy Harvesting Smart Textiles. In: Schneegass, S., Amft, O. (eds) Smart Textiles. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-319-50124-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50124-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50123-9

  • Online ISBN: 978-3-319-50124-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics