Skip to main content

Initial Data and Theory for a High Specific-Power Ankle Exoskeleton Device

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 1))

Abstract

We present experimental data for an ankle exoskeleton that provides a metabolic benefit during running. Intuitively, there is an optimal level of power that any particular human can accept and use to benefit walking or running, which is a function of the particular human, the selected gait, and speed. We provide and discuss modeling optimization results to complement our recent data for the device, toward modifying future designs and understanding theoretical performance limits.

This work is funded in part through an NSF CAREER Award (CMMI 1255018).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Martin, L.: HULC. http://www.lockheedmartin.com/us/products/exoskeleton/hulc.html

  2. Raytheon: XOS2. http://www.army-technology.com/projects/raytheon-xos-2-exoskeleton-us/

  3. Amundson, K.: Human exoskeleton control and energetics. Ph.D. Dissertation, UC Berkeley, Berkeley, CA, USA (2007)

    Google Scholar 

  4. Wehner, M., Quinlivan, B., Aubin, P.M., Martinez-Villalpando, E., Baumann, M., Stirling, L., Holt, K., Wood, R., Walsh, C.: A lightweight soft exosuit for gait assistance. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 3362–3369. IEEE (2013)

    Google Scholar 

  5. Mooney, L.M., Rouse, E.J., Herr, H.M.: Autonomous exoskeleton reduces metabolic cost of human walking during load carriage. J. Neuroengineering Rehabil. 11(1), 1 (2014)

    Article  Google Scholar 

  6. Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S.: Optimal distribution of contact forces with inverse-dynamics control. Int. J. Robot. Res. 32(3), 280–298 (2013)

    Article  Google Scholar 

  7. Mordatch, I., Wang, J.M., Todorov, E., Koltun, V.: Animating human lower limbs using contact-invariant optimization. ACM Trans. Graph. (TOG) 32(6), 203 (2013)

    Article  Google Scholar 

  8. Posa, M., Cantu, C., Tedrake, R.: A direct method for trajectory optimization of rigid bodies through contact. Int. J. Robot. Res. 33(1), 69–81 (2014)

    Article  Google Scholar 

  9. Karumanchi, S., Edelberg, K., Baldwin, I., Nash, J., Satzinger, B., Reid, J., Bergh, C., Lau, C., Leichty, J., Carpenter, K., Shekels, M., Gildner, M., Newill-Smith, D., Carlton, J., Koehler, J., Dobreva, T., Frost, M., Hebert, P., Borders, J., Ma, J., Douillard, B., Shankar, K., Byl, K., Burdick, J.W., Backes, P., Kennedy, B.: Team robosimian: semi-autonomous mobile manipulation at the 2015 darpa robotics challenge finals. J. Field Robot. (2016). Special Issue on the 2015 DRC Finals

    Google Scholar 

  10. Liu, C., Atkeson, C.G., Feng, S., Xinjilefu, X.: Full-body motion planning and control for the car egress task of the darpa robotics challenge. In: IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 527–532. IEEE (2015)

    Google Scholar 

  11. Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F., Koolen, T., Marion, P., Tedrake, R.: Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. Auton. Robots 40(3), 429–455 (2016)

    Article  Google Scholar 

  12. Sawicki, G.S., Ferris, D.P.: Mechanics and energetics of incline walking with robotic ankle exoskeletons. J. Exp. Biol. 212(1), 32–41 (2009)

    Article  Google Scholar 

  13. Tözeren, A.: Human Body Dynamics: Classical Mechanics and Human Movement. Springer Science & Business Media, New York (1999)

    Google Scholar 

  14. Biewener, A.A.: Animal Locomotion. Oxford University Press, Oxford (2003)

    Google Scholar 

  15. Farris, D.J., Sawicki, G.S.: The mechanics and energetics of human walking and running: a joint level perspective. J. Roy. Soc. Interface (2011). doi:10.1098/rsif.2011.0182

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katie Byl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sovero, S., Talele, N., Smith, C., Cox, N., Swift, T., Byl, K. (2017). Initial Data and Theory for a High Specific-Power Ankle Exoskeleton Device. In: Kulić, D., Nakamura, Y., Khatib, O., Venture, G. (eds) 2016 International Symposium on Experimental Robotics. ISER 2016. Springer Proceedings in Advanced Robotics, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-50115-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50115-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50114-7

  • Online ISBN: 978-3-319-50115-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics