Skip to main content

A System for Multi-step Mobile Manipulation: Architecture, Algorithms, and Experiments

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 1))

Abstract

Household manipulation presents a challenge to robots because it requires perceiving a variety of objects, planning multi-step motions, and recovering from failure. This paper presents practical techniques that improve performance in these areas by considering the complete system in the context of this specific domain. We validate these techniques on a table-clearing task that involves loading objects into a tray and transporting it. The results show that these techniques improve success rate and task completion time by incorporating expected real-world performance into the system design.

This work was sponsored in part by the Toyota Motor Corporation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.personalrobotics.ri.cmu.edu/software.

  2. 2.

    Note, however, that these order critically depend on collision checking speed.

References

  1. Srinivasa, S., Ferguson, D., et al.: The robotic busboy: steps towards developing a mobile robotic home assistant. In: International Conference on Intelligent Autonomous Systems (2008)

    Google Scholar 

  2. Cakmak, M., Srinivasa, S., et al.: Human preferences for robot-human hand-over configurations. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2011)

    Google Scholar 

  3. King, J., Klingensmith, M., et al.: Pregrasp manipulation as trajectory optimization. In: Robotics: Science and Systems (2013)

    Google Scholar 

  4. Moll, M., Şucan, I.A., Kavraki, L.E.: An extensible benchmarking infrastructure for motion planning algorithms, CoRR abs/1412.6673 (2014)

    Google Scholar 

  5. Kaelbling, L.P., Lozano-Pérez, T.: Integrated task and motion planning in belief space. Int. J. Robotics Res. 32(9–10), 1194–1227 (2013)

    Article  Google Scholar 

  6. Hebert, P., Bajracharya, M., et al.: Mobile manipulation and mobility as manipulation–design and algorithms of RoboSimian. J. Field Robotics 32(2), 255–274 (2015)

    Article  Google Scholar 

  7. Bagnell, J.A., Cavalcanti, F., et al.: An integrated system for autonomous robotics manipulation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2012)

    Google Scholar 

  8. Bobrow, J.E., Dubowsky, S., Gibson, J.: Time-optimal control of robotic manipulators along specified paths. Int. J. Robotics Res. 4(3), 3–17 (1985)

    Article  Google Scholar 

  9. Geraerts, R., Overmars, M.H.: Creating high-quality paths for motion planning. Int. J. Robotics Res. 26(8), 845–863 (2007)

    Article  Google Scholar 

  10. Olson, E.: Apriltag: a robust and flexible visual fiducial system. In: IEEE International Conference on Robotics and Automation, pp. 3400–3407 (2011)

    Google Scholar 

  11. Pauwels, K., Kragic, D.: Simtrack: A simulation-based framework for scalable real-time object pose detection and tracking. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1300–1307 (2015)

    Google Scholar 

  12. Cao, Z., Sheikh, Y., Banerjee, N.K.: Real-time scalable 6-DOF pose estimation for textureless objects. In: IEEE International Conference on Robotics and Automation, pp. 2441–2448 (2016)

    Google Scholar 

  13. Klingensmith, M., Dryanovski, I., et al.: Chisel: real time large scale 3D reconstruction onboard a mobile device. In: Robotics: Science and Systems (2015)

    Google Scholar 

  14. Chitta, S., Jones, E.G., et al.: Mobile manipulation in unstructured environments: perception, planning, and execution. IEEE Robot. Autom. Mag. 19(2), 58–71 (2012)

    Article  Google Scholar 

  15. Correll, N., Bekris, K.E., et al.: Lessons from the Amazon picking challenge. CoRR abs/1601.05484 (2016)

    Google Scholar 

  16. Gini, M., Smith, R.: Monitoring robot actions for error detection and recovery. In: Workshop on Space Telerobotics (1987)

    Google Scholar 

  17. Edsinger, A.L.: Robot manipulation in human environments. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (2007)

    Google Scholar 

  18. Shapiro, E.: A hierarchical framework for configuration space task planning. Masters Thesis, Carnegie Mellon University, Computer Science Department (2015)

    Google Scholar 

  19. Smith, R.: Open Dynamics Engine (ODE). http://www.ode.org/

  20. Larsen, E., Gottschalk, S.: Proximity Query Package (PQP), University of North Carolina at Chapel Hill (1999). http://gamma.cs.unc.edu/SSV/

  21. Pan, J., Chitta, S., Manocha, D.: FCL: a general purpose library for collision and proximity queries. In: IEEE International Conference on Robotics and Automation, pp. 3859–3866, May 2012

    Google Scholar 

  22. Zucker, M., Ratliff, R., et al.: CHOMP: covariant Hamiltonian optimization for motion planning. Int. J. Robotics Res. 32(9–10), 1164–1193 (2013)

    Article  Google Scholar 

  23. Schulman, J., Ho, J., et al.: Finding locally optimal, collision-free trajectories with sequential convex optimization. In: Robotics: Science and Systems, pp. 1–10 (2013)

    Google Scholar 

  24. Kuffner, J.J., LaValle, S.M.: RRT-Connect: an efficient approach to single-query path planning. In: IEEE International Conference on Robotics and Automation (2000)

    Google Scholar 

  25. Berenson, D., Srinivasa, S.S., et al.: Manipulation planning on constraint manifolds. In: IEEE International Conference on Robotics and Automation (2009)

    Google Scholar 

  26. Berenson, D., Srinivasa, S., Kuffner, J.: Task space regions: a framework for pose-constrained manipulation planning. Int. J. Robotics Res. 30(12), 1435–1460 (2011)

    Article  Google Scholar 

  27. Dragan, A., Ratliff, N., Srinivasa, S.: Manipulation planning with goal sets using constrained trajectory optimization. In: IEEE International Conference on Robotics and Automation (2011)

    Google Scholar 

  28. Hauser, K., Ng-Thow-Hing, V.: Fast smoothing of manipulator trajectories using optimal bounded-acceleration shortcuts. In: IEEE International Conference on Robotics and Automation, pp. 2493–2498 (2010)

    Google Scholar 

  29. Berenson, D.: Constrained manipulation planning. Ph.D. thesis, Carnegie Mellon University, Robotics Institute, May 2011

    Google Scholar 

  30. Kuffner, J.J., LaValle, S.M.: RRT-Connect: an efficient approach to single-query path planning. In: IEEE International Conference on Robotics and Automation, vol. 2, pp. 995–1001 (2000)

    Google Scholar 

  31. Şucan, I.A., Moll, M., Kavraki, L.E.: The open motion planning library. IEEE Robot. Autom. Mag. 19(4), 72–82 (2012). http://ompl.kavrakilab.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siddhartha S. Srinivasa , Aaron M. Johnson or Gilwoo Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Srinivasa, S.S. et al. (2017). A System for Multi-step Mobile Manipulation: Architecture, Algorithms, and Experiments. In: Kulić, D., Nakamura, Y., Khatib, O., Venture, G. (eds) 2016 International Symposium on Experimental Robotics. ISER 2016. Springer Proceedings in Advanced Robotics, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-50115-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50115-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50114-7

  • Online ISBN: 978-3-319-50115-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics