Skip to main content

Towards Answering Provenance-Enabled SPARQL Queries Over RDF Data Cubes

  • Conference paper
  • First Online:
Semantic Technology (JIST 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10055))

Included in the following conference series:

Abstract

The SPARQL 1.1 standard has made it possible to formulate analytical queries in SPARQL. While some approaches have become available for processing analytical queries on RDF data cubes, little attention has been paid to answering provenance-enabled queries over such data. Yet, considering provenance is a prerequisite to being able to validate if a query result is trustworthy. The main challenge for existing triple stores is the way provenance can be encoded in standard triple stores based on context values (named graphs). Hence, in this paper we analyze the suitability of existing triple stores for answering provenance-enabled queries on RDF data cubes, identify their shortcomings, and propose an index to handle the high number of context values that provenance encoding typically entails. Our experimental results using the Star Schema Benchmark show the feasibility and scalability of our index and query evaluation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/lorenae/qb4olap/blob/master/rdf/qb4olap.1.2.ttl.

References

  1. Abelló, A., Romero, O., Pedersen, T.B., Berlanga, R., Nebot, V., Aramburu, M.J., Simitsis, A.: Using semantic web technologies for exploratory OLAP: a survey. TKDE 27(2), 571–588 (2015)

    Google Scholar 

  2. Apache software foundation. Jena TDB (3.1.0). https://jena.apache.org/

  3. Bog, A., Plattner, H., Zeier, A.: A mixed transaction processing and operational reporting benchmark. ISF 13(3), 321–335 (2011)

    Google Scholar 

  4. Chebotko, A., Abraham, J., Brazier, P., Piazza, A., Kashlev, A., Lu, S.: Storing, indexing and querying large provenance data sets as RDF graphs in apache HBase. In: Services, pp. 1–8 (2013)

    Google Scholar 

  5. Chebotko, A., Lu, S., Fei, X., Fotouhi, F.: RDFProv: a relational RDF store for querying and managing scientific workflow provenance. DKE 69(8), 836–865 (2010)

    Article  Google Scholar 

  6. Cyganiak, R., Reynolds, D.: The RDF data cube vocabulary. W3C recommendation, W3C, January 2014. http://www.w3.org/TR/2014/REC-vocab-data-cube-20140116/

  7. Deb Nath, R.P., Hose, K., Pedersen, T.B.: Towards a programmable semantic extract-transform-load framework for semantic data warehouses. In: DOLAP, pp. 15–24 (2015)

    Google Scholar 

  8. Eclipse RDF4J. RDF4J (2.0.1). http://rdf4j.org/

  9. Etcheverry, L., Vaisman, A., Zimányi, E.: Modeling and querying data warehouses on the semantic web using QB4OLAP. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2014. LNCS, vol. 8646, pp. 45–56. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10160-6_5

    Google Scholar 

  10. Flouris, G., Fundulaki, I., Pediaditis, P., Theoharis, Y., Christophides, V.: Coloring RDF triples to capture provenance. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 196–212. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04930-9_13

    Chapter  Google Scholar 

  11. Gür, N., Hose, K., Pedersen, T.B., Zimányi, E.: Modeling and querying spatial data warehouses on the semantic web. In: Qi, G., Kozaki, K., Pan, J.Z., Yu, S. (eds.) JIST 2015. LNCS, vol. 9544, pp. 3–22. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31676-5_1

    Chapter  Google Scholar 

  12. Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C recommendation, W3C, March 2013. http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

  13. Hartig, O., Thompson, B.: Foundations of an alternative approach to reification in RDF (2014). CoRR abs/1406.3399

  14. Ibragimov, D., Hose, K., Pedersen, T.B., Zimányi, E.: Towards exploratory OLAP over linked open data - a case study. In: BIRTE, pp. 1–18 (2014)

    Google Scholar 

  15. Ibragimov, D., Hose, K., Pedersen, T.B., Zimányi, E.: Processing aggregate queries in a federation of SPARQL endpoints. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 269–285. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18818-8_17

    Chapter  Google Scholar 

  16. Jakobsen, K.A., Andersen, A.B., Hose, K., Pedersen, T.B.: Optimizing RDF data cubes for efficient processing of analytical queries. In: COLD (2015)

    Google Scholar 

  17. Jensen, C.S., Pedersen, T.B., Thomsen, C.: Multidimensional Databases and Data Warehousing. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, San Rafael (2010)

    MATH  Google Scholar 

  18. Jovanovic, P., Romero, O., Simitsis, A., Abelló, A.: ORE: an iterative approach to the design and evolution of multi-dimensional schemas. In: DOLAP, pp. 1–8 (2012)

    Google Scholar 

  19. Laborie, S., Ravat, F., Song, J., Teste, O.: Combining business intelligence with semantic web: overview and challenges. In: INFORSID, pp. 99–114 (2015)

    Google Scholar 

  20. McGuinness, D., Lebo, T., Sahoo, S.: PROV-o: The PROV ontology. W3C recommendation, W3C, April 2013. http://www.w3.org/TR/2013/REC-prov-o-20130430/

  21. O’Neil, P., O’Neil, B., Chen, X.: Star schema benchmark. Technical report, UMass/Boston, June 2019. http://www.cs.umb.edu/~poneil/StarSchemaB.PDF

  22. Wang, H., Wu, T., Qi, G., Ruan, T.: On publishing Chinese linked open schema. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 293–308. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11964-9_19

    Google Scholar 

  23. Wylot, M., Cudre-Mauroux, P., Groth, P.: TripleProv: efficient processing of lineage queries in a native RDF store. In: WWW, pp. 455–466 (2014)

    Google Scholar 

  24. Wylot, M., Cudre-Mauroux, P., Groth, P.: Executing provenance-enabled queries over web data. In: WWW, pp. 1275–1285 (2015)

    Google Scholar 

Download references

Acknowledgments

This research was partially funded by the Danish Council for Independent Research (DFF) under grant agreement No. DFF-4093-00301.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Ahlstrøm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Ahlstrøm, K., Hose, K., Pedersen, T.B. (2016). Towards Answering Provenance-Enabled SPARQL Queries Over RDF Data Cubes. In: Li, YF., et al. Semantic Technology. JIST 2016. Lecture Notes in Computer Science(), vol 10055. Springer, Cham. https://doi.org/10.1007/978-3-319-50112-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50112-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50111-6

  • Online ISBN: 978-3-319-50112-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics