Multi-colored Spanning Graphs

  • Hugo A. Akitaya
  • Maarten Löffler
  • Csaba D. TóthEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9801)


We study a problem proposed by Hurtado et al. [10] motivated by sparse set visualization. Given n points in the plane, each labeled with one or more primary colors, a colored spanning graph (CSG) is a graph such that for each primary color, the vertices of that color induce a connected subgraph. The Min-CSG problem asks for the minimum sum of edge lengths in a colored spanning graph. We show that the problem is NP-hard for k primary colors when \(k\ge 3\) and provide a \((2-\frac{1}{3+2\varrho })\)-approximation algorithm for \(k=3\) that runs in polynomial time, where \(\varrho \) is the Steiner ratio. Further, we give a O(n) time algorithm in the special case that the input points are collinear and k is constant.


Bipartite Graph Steiner Tree Active Point Collinear Point Primary Color 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research on this paper was supported in part by the NSF awards CCF-1422311 and CCF-1423615. Akitaya was supported by the Science Without Borders program. Löffler was partially supported by the Netherlands Organisation for Scientific Research (NWO) projects 639.021.123 and 614.001.504.


  1. 1.
    Alper, B., Riche, N., Ramos, G., Czerwinski, M.: Design study of linesets, a novel set visualization technique. IEEE Trans. Vis. Comput. Graph. 17(12), 2259–2267 (2011)CrossRefGoogle Scholar
  2. 2.
    Alsallakh, B., Micallef, L., Aigner, W., Hauser, H., Miksch, S., Rodgers, P.: Visualizing sets and set-typed data: state-of-the-art and future challenges. In: Proceedings of Eurographics Conference on Visualization (EuroVis), pp. 1–21 (2014)Google Scholar
  3. 3.
    Berend, D., Tassa, T.: Improved bounds on Bell numbers and on moments of sums of random variables. Prob. Math. Stat. 30(2), 185–205 (2010)MathSciNetzbMATHGoogle Scholar
  4. 4.
    de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the plane. Int. J. Comput. Geom. Appl. 22(3), 187–206 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Biniaz, A., Bose, P., van Duijn, I., Maheshwari, A., Smid, M.: A faster algorithm for the minimum red-blue-purple spanning graph problem for points on a circle. In: Proceedings of 28th Canadian Conference on Computational Geometry, Vancouver, BC, pp. 140–146 (2016)Google Scholar
  6. 6.
    Chung, F., Graham, R.: A new bound for Euclidean Steiner minimum trees. Ann. N.Y. Acad. Sci. 440, 328–346 (1986)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dinkla, K., van Kreveld, M.J., Speckmann, B., Westenberg, M.A.: Kelp diagrams: point set membership visualization. Comput. Graph. Forum 31(3), 875–884 (2012)CrossRefGoogle Scholar
  8. 8.
    Gilbert, E., Pollak, H.: Steiner minimal trees. SIAM J. Appl. Math. 16, 1–29 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hurtado, F., Korman, M., van Kreveld, M., Löffler, M., Sacristán, V., Silveira, R.I., Speckmann, B.: Colored spanning graphs for set visualization. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 280–291. Springer, Heidelberg (2013). doi: 10.1007/978-3-319-03841-4_25 CrossRefGoogle Scholar
  10. 10.
    Hurtado, F., Korman, M., van Kreveld, M., Löffler, M., Sacristan, V., Shioura, A., Silveira, R.I., Speckmann, B., Tokuyama, T.: Colored spanning graphs for set visualization (2016). Preprint arXiv:1603.00580
  11. 11.
    Meulemans, W., Riche, N.H., Speckmann, B., Alper, B., Dwyer, T.: KelpFusion: a hybrid set visualization technique. IEEE Trans. Vis. Comput. Graph. 19(11), 1846–1858 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Hugo A. Akitaya
    • 1
  • Maarten Löffler
    • 2
  • Csaba D. Tóth
    • 1
    • 3
    Email author
  1. 1.Tufts UniversityMedfordUSA
  2. 2.Utrecht UniversityUtrechtThe Netherlands
  3. 3.California State University NorthridgeLos AngelesUSA

Personalised recommendations