Beyond Level Planarity

  • Patrizio Angelini
  • Giordano Da Lozzo
  • Giuseppe Di Battista
  • Fabrizio FratiEmail author
  • Maurizio Patrignani
  • Ignaz Rutter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9801)


In this paper we settle the computational complexity of two open problems related to the extension of the notion of level planarity to surfaces different from the plane. Namely, we show that the problems of testing the existence of a level embedding of a level graph on the surface of the rolling cylinder or on the surface of the torus, respectively known by the name of Cyclic Level Planarity and Torus Level Planarity, are polynomial-time solvable.

Moreover, we show a complexity dichotomy for testing the Simultaneous Level Planarity of a set of level graphs, with respect to both the number of level graphs and the number of levels.


Planar Graph Level Planarity Torus Surface Complexity Dichotomy Level Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Beyond level planarity. CoRR abs/1510.08274v3 (2015).
  2. 2.
    Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Roselli, V.: The importance of being proper: (in clustered-level planarity and T-level planarity). Theor. Comput. Sci. 571, 1–9 (2015). MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A.: Classification of planar upward embedding. In: Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 415–426. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-25878-7_39 CrossRefGoogle Scholar
  4. 4.
    Bachmaier, C., Brandenburg, F., Forster, M.: Radial level planarity testing and embedding in linear time. J. Graph Algorithms Appl. 9(1), 53–97 (2005). MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bachmaier, C., Brunner, W.: Linear time planarity testing and embedding of strongly connected cyclic level graphs. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 136–147. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-87744-8_12 CrossRefGoogle Scholar
  6. 6.
    Bachmaier, C., Brunner, W., König, C.: Cyclic level planarity testing and embedding. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 50–61. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-77537-9_8 CrossRefGoogle Scholar
  7. 7.
    Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embeddings of planar graphs (Chap. 11). In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization. Discrete Mathematics and Its Applications, pp. 349–382. Chapman and Hall/CRC, Boca Raton (2013)Google Scholar
  8. 8.
    Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding problems. ACM Trans. Algorithms 12(2), 16 (2016). MathSciNetGoogle Scholar
  9. 9.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976).–1 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Brandenburg, F.: Upward planar drawings on the standing and the rolling cylinders. Comput. Geom. 47(1), 25–41 (2014). MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Braß, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Comput. Geom. 36(2), 117–130 (2007). MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Di Battista, G., Nardelli, E.: Hierarchies and planarity theory. IEEE Trans. Syst. Man Cybern. 18(6), 1035–1046 (1988). MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Estrella-Balderrama, A., Fowler, J.J., Kobourov, S.G.: On the characterization of level planar trees by minimal patterns. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 69–80. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-11805-0_9 CrossRefGoogle Scholar
  14. 14.
    Forster, M., Bachmaier, C.: Clustered level planarity. In: Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 218–228. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24618-3_18 CrossRefGoogle Scholar
  15. 15.
    Fulek, R., Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Hanani-Tutte, monotone drawings, and level-planarity. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 263–287. Springer, New York (2013). CrossRefGoogle Scholar
  16. 16.
    Haeupler, B., Raju Jampani, K., Lubiw, A.: Testing simultaneous planarity when the common graph is 2-connected. J. Graph Algorithms Appl. 17(3), 147–171 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Healy, P., Kuusik, A., Leipert, S.: A characterization of level planar graphs. Discrete Math. 280(1–3), 51–63 (2004). MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Heath, L.S., Pemmaraju, S.V.: Recognizing leveled-planar dags in linear time. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 300–311. Springer, Heidelberg (1996). doi: 10.1007/BFb0021813 CrossRefGoogle Scholar
  19. 19.
    Hsu, W., McConnell, R.M.: PQ trees, PC trees, and planar graphs. In: Mehta, D.P., Sahni, S. (eds.) Handbook of Data Structures and Applications. Chapman and Hall/CRC, Boca Raton (2004). Google Scholar
  20. 20.
    Jünger, M., Leipert, S., Mutzel, P.: Level planarity testing in linear time. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 224–237. Springer, Heidelberg (1998). doi: 10.1007/3-540-37623-2_17 CrossRefGoogle Scholar
  21. 21.
    Opatrny, J.: Total ordering problem. SIAM J. Comput. 8(1), 111–114 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Randerath, B., Speckenmeyer, E., Boros, E., Hammer, P.L., Kogan, A., Makino, K., Simeone, B., Cepek, O.: A satisfiability formulation of problems on level graphs. Electron. Notes Discrete Math. 9, 269–277 (2001).–0 CrossRefzbMATHGoogle Scholar
  23. 23.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981). MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wotzlaw, A., Speckenmeyer, E., Porschen, S.: Generalized k-ary tanglegrams on level graphs: a satisfiability-based approach and its evaluation. Discrete Appl. Math. 160(16–17), 2349–2363 (2012). MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Patrizio Angelini
    • 1
  • Giordano Da Lozzo
    • 2
  • Giuseppe Di Battista
    • 2
  • Fabrizio Frati
    • 2
    Email author
  • Maurizio Patrignani
    • 2
  • Ignaz Rutter
    • 3
  1. 1.Tübingen UniversityTübingenGermany
  2. 2.Roma Tre UniversityRomeItaly
  3. 3.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations