The Crossing Number of the Cone of a Graph

  • Carlos A. AlfaroEmail author
  • Alan Arroyo
  • Marek Derňár
  • Bojan Mohar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9801)


Motivated by a problem asked by Richter and by the long standing Harary-Hill conjecture, we study the relation between the crossing number of a graph G and the crossing number of its cone CG, the graph obtained from G by adding a new vertex adjacent to all the vertices in G. Simple examples show that the difference \(cr(CG)-cr(G)\) can be arbitrarily large for any fixed \(k=cr(G)\). In this work, we are interested in finding the smallest possible difference, that is, for each non-negative integer k, find the smallest f(k) for which there exists a graph with crossing number at least k and cone with crossing number f(k). For small values of k, we give exact values of f(k) when the problem is restricted to simple graphs, and show that \(f(k)=k+\varTheta (\sqrt{k})\) when multiple edges are allowed.


  1. 1.
    Albertson, M.O., Cranston, D.W., Fox, J.: Crossings, colorings and cliques. Electron. J. Comb. 16, #R45 (2009)Google Scholar
  2. 2.
    Bannister, M.J., Eppstein, D.: Crossing minimization for 1-page and 2-page drawings of graphs with bounded treewidth. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 210–221. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45803-7_18 Google Scholar
  3. 3.
    Barát, J., Tóth, G.: Towards the Albertson conjecture. Electron. J. Comb. 17, #R73 (2010)Google Scholar
  4. 4.
    Bollobás, B., Scott, A.D.: Better bounds for Max Cut. In: Contemporary Combinatorics. Bolyai Soc. Math. Stud. vol. 10, pp. 185–246. János Bolyai Math. Soc., Budapest (2002)Google Scholar
  5. 5.
    Buchheim, C., Zheng, L.: Fixed linear crossing minimization by reduction to the maximum cut problem. In: Computing and Combinatorics, pp. 507–516 (2006)Google Scholar
  6. 6.
    Catlin, P.A.: Hajos’ graph-coloring conjecture: variations and counterexamples. J. Comb. Theory Ser. B 26, 268–274 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Erdős, P.: Gráfok páros körüljárású résgráfjairól (On bipartite subgraphs of graphs in Hungarian). Mat. Lapok 18, 283–288 (1967)MathSciNetGoogle Scholar
  8. 8.
    Edwards, C.S.: Some extremal properties of bipartite subgraphs. Can. J. Math. 25, 475–485 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Edwards, C.S.: An improved lower bound for the number of edges in a largest bipartite subgraph. In: Recent Advances in Graph Theory, pp. 167–181 (1975)Google Scholar
  10. 10.
    Harary, F., Hill, A.: On the number of crossings in a complete graph. Proc. Edinb. Math. Soc. 13, 333–338 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kainen, P.C.: The book thickness of a graph II. Congr. Numerantium 71, 127–132 (1990)MathSciNetzbMATHGoogle Scholar
  12. 12.
    De Klerk, E., Pasechnik, D.V., Schrijver, A.: Reduction of symmetric semidefinite programs using the regular \(\ast \)-representation. Math. Program. 109, 613–624 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    de Klerk, E., Pasechnik, D., Salazar, G.: Improved lower bounds on book crossing numbers of complete graphs. SIAM J. Discret. Math. 27, 619–633 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Oporowski, B., Zhao, D.: Coloring graphs with crossings. Discret. Math. 309, 2948–2951 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Carlos A. Alfaro
    • 1
    Email author
  • Alan Arroyo
    • 2
  • Marek Derňár
    • 3
  • Bojan Mohar
    • 4
  1. 1.Banco de MéxicoMexico CityMexico
  2. 2.Department of Combinatorics and OptimizationUniversity of WaterlooWaterlooCanada
  3. 3.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic
  4. 4.Department of MathematicsSimon Fraser UniversityBurnabyCanada

Personalised recommendations