Advertisement

Block Crossings in Storyline Visualizations

  • Thomas C. van Dijk
  • Martin Fink
  • Norbert Fischer
  • Fabian LippEmail author
  • Peter Markfelder
  • Alexander Ravsky
  • Subhash Suri
  • Alexander Wolff
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9801)

Abstract

Storyline visualizations help visualize encounters of the characters in a story over time. Each character is represented by an x-monotone curve that goes from left to right. A meeting is represented by having the characters that participate in the meeting run close together for some time. In order to keep the visual complexity low, rather than just minimizing pairwise crossings of curves, we propose to count block crossings, that is, pairs of intersecting bundles of lines.

Our main results are as follows. We show that minimizing the number of block crossings is NP-hard, and we develop, for meetings of bounded size, a constant-factor approximation. We also present two fixed-parameter algorithms and, for meetings of size 2, a greedy heuristic that we evaluate experimentally.

Keywords

Greedy Algorithm Cyclic Order Random Instance Interval Representation Arbitrary Permutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Buchin, K., van Kreveld, M.J., Meijer, H., Speckmann, B., Verbeek, K.: On planar supports for hypergraphs. J. Graph Algorithms Appl. 15(4), 533–549 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bulteau, L., Fertin, G., Rusu, I.: Sorting by transpositions is difficult. SIAM J. Discrete Math. 26(3), 1148–1180 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    van Dijk, T.C., Fink, M., Fischer, N., Lipp, F., Markfelder, P., Ravsky, A., Suri, S., Wolff, A.: Block crossings in storyline visualizations (2016). http://arxiv.org/abs/1609.00321
  4. 4.
    Eriksson, H., Eriksson, K., Karlander, J., Svensson, L., Wästlund, J.: Sorting a bridge hand. Discrete Math. 241(1), 289–300 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fink, M., Pupyrev, S., Wolff, A.: Ordering metro lines by block crossings. J. Graph Algorithms Appl. 19(1), 111–153 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kim, N.W., Card, S.K., Heer, J.: Tracing genealogical data with timenets. In: Proceedings of the International Conference Advanced Visual Interfaces (AVI 2010), pp. 241–248 (2010)Google Scholar
  7. 7.
    Korf, R.E.: Depth-first iterative-deepening: an optimal admissible tree search. Artif. Intell. 27(1), 97–109 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kostitsyna, I., Nöllenburg, M., Polishchuk, V., Schulz, A., Strash, D.: On minimizing crossings in storyline visualizations. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 192–198. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-27261-0_16 CrossRefGoogle Scholar
  9. 9.
    Moore, J.I.: Interval hypergraphs and \(D\)-interval hypergraphs. Discrete Math. 17(2), 173–179 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Muelder, C., Crnovrsanin, T., Sallaberry, A., Ma, K.: Egocentric storylines for visual analysis of large dynamic graphs. In: Proceedings of the IEEE International Conference Big Data, pp. 56–62 (2013)Google Scholar
  11. 11.
    Munroe, R.: Movie narrative charts. https://xkcd.com/657/
  12. 12.
    Tanahashi, Y., Ma, K.: Design considerations for optimizing storyline visualizations. IEEE Trans. Vis. Comput. Graph. 18(12), 2679–2688 (2012)CrossRefGoogle Scholar
  13. 13.
    Trotter, W.T., Moore, J.I.: Characterization problems for graphs, partially ordered sets, lattices, and families of sets. Discrete Math. 16(4), 361–381 (1976)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Thomas C. van Dijk
    • 1
  • Martin Fink
    • 2
  • Norbert Fischer
    • 1
  • Fabian Lipp
    • 1
    Email author
  • Peter Markfelder
    • 1
  • Alexander Ravsky
    • 3
  • Subhash Suri
    • 2
  • Alexander Wolff
    • 1
  1. 1.Lehrstuhl für Informatik IUniversität WürzburgWürzburgGermany
  2. 2.University of CaliforniaSanta BarbaraUSA
  3. 3.Pidstryhach Institute for Applied Problems of Mechanics and MathematicsNational Academy of Sciences of UkraineLvivUkraine

Personalised recommendations