Advertisement

Crossing Minimization in Storyline Visualization

  • Martin Gronemann
  • Michael Jünger
  • Frauke Liers
  • Francesco Mambelli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9801)

Abstract

A storyline visualization is a layout that represents the temporal dynamics of social interactions along time by the convergence of chronological lines. Among the criteria oriented at improving aesthetics and legibility of a representation of this type, a small number of line crossings is the hardest to achieve. We model the crossing minimization in the storyline visualization problem as a multi-layer crossing minimization problem with tree constraints. Our algorithm can compute a layout with the minimum number of crossings of the chronological lines. Computational results demonstrate that it can solve instances with more than 100 interactions and with more than 100 chronological lines to optimality.

Notes

Acknowledgments

The authors are grateful to Käte Zimmer who made her MLCM code, developed in the context of her Master’s thesis [35], available to us. Her code served as the basis for our experimental MLCM-TC implementation. Our work is supported by the EU grant FP7-PEOPLE-2012-ITN - Marie-Curie Action “Initial Training Networks” no. 316647 “Mixed-Integer Nonlinear Optimization” (MINO).

References

  1. 1.
    Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Roselli, V.: The importance of being proper: (in clustered-level planarity and \(T\)-level planarity). Theoret. Comput. Sci. 571, 1–9 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barahona, F., Jünger, M., Reinelt, G.: Experiments in quadratic 0–1 programming. Math. Program. 44, 127–137 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barahona, F., Mahjoub, A.R.: On the cut polytope. Math. Program. 36(2), 157–173 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Baumann, F., Buchheim, C., Liers, F.: Exact bipartite crossing minimization under tree constraints. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 118–128. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13193-6_11 CrossRefGoogle Scholar
  5. 5.
    Bekos, M.A., Kaufmann, M., Potika, K., Symvonis, A.: Line crossing minimization on metro maps. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 231–242. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-77537-9_24 CrossRefGoogle Scholar
  6. 6.
    Buchheim, C., Wiegele, A., Zheng, L.: Exact algorithms for the quadratic linear ordering problem. INFORMS J. Comput. 22(1), 168–177 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Buchin, K., Buchin, M., Byrka, J., Nöllenburg, M., Okamoto, Y., Silveira, R.I., Wolff, A.: Drawing (Complete) binary tanglegrams. Algorithmica 62(1), 309–332 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chimani, M., Hungerländer, P., Jünger, M., Mutzel, P.: An SDP approach to multi-level crossing minimization. In: Müller-Hannemann, M., Werneck, R. (eds.) Proceedings of the 13th Workshop on Algorithm Engineering and Experiments, ALENEX 2011, pp. 116–126. Society for Industrial and Applied Mathematics (2011)Google Scholar
  9. 9.
    Cui, W., Liu, S., Tan, L., Shi, C., Song, Y., Gao, Z.J., Tong, X., Qu, H.: TextFlow: towards better understanding of evolving topics in text. IEEE Trans. Vis. Comput. Graph. 17(12), 2412–2421 (2011)CrossRefGoogle Scholar
  10. 10.
    De Simone, C.: The cut polytope and the Boolean quadric polytope. Discrete Math. 79(1), 71–75 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fernau, H., Kaufmann, M., Poths, M.: Comparing trees via crossing minimization. J. Comput. Syst. Sci. 76(7), 593–608 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fink, M., Pupyrev, S.: Metro-line crossing minimization: hardness, approximations, and tractable cases. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 328–339. Springer, Heidelberg (2013). doi: 10.1007/978-3-319-03841-4_29 CrossRefGoogle Scholar
  13. 13.
    Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Algebr. Discrete Methods 4(3), 312–316 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Grötschel, M., Jünger, M., Reinelt, G.: Facets of the linear ordering polytope. Math. Program. 33(1), 43–60 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hammer, P.: Some network flow problems solved with pseudo-Boolean programming. Oper. Res. 13, 388–399 (1965)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Healy, P., Kuusik, A.: Algorithms for multi-level graph planarity testing and layout. Theoret. Comput. Sci. 320(2–3), 331–344 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    IBM: IBM ILOG CPLEX Optimization Studio 12.6 (2014). http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
  18. 18.
    Jünger, M., Lee, E.K., Mutzel, P., Odenthal, T.: A polyhedral approach to the multi-layer crossing minimization problem. In: Di Battista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 13–24. Springer, Heidelberg (1997). doi: 10.1007/3-540-63938-1_46 CrossRefGoogle Scholar
  19. 19.
    Jünger, M., Leipert, S., Mutzel, P.: Level planarity testing in linear time. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 224–237. Springer, Heidelberg (1998). doi: 10.1007/3-540-37623-2_17 CrossRefGoogle Scholar
  20. 20.
    Jünger, M., Thienel, S.: The ABACUS system for branch-and-cut-and-price algorithms in integer programming and combinatorial optimization. Softw. Pract. Exp. 30, 1325–1352 (2000)CrossRefzbMATHGoogle Scholar
  21. 21.
    Knuth, D.E.: The Stanford GraphBase source (1993). ftp://ftp.cs.stanford.edu/pub/sgb/sgb.tar.gz
  22. 22.
    Kostitsyna, I., Nöllenburg, M., Polishchuk, V., Schulz, A., Strash, D.: On minimizing crossings in storyline visualizations. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 192–198. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-27261-0_16 CrossRefGoogle Scholar
  23. 23.
    Liers, F., Jünger, M., Reinelt, G., Rinaldi, G.: Computing exact ground states of hard ising spin glass problems by branch-and-cut. In: Hartmann, A.K., Rieger, H. (eds.) New Optimization Algorithms in Physics, pp. 47–69. Wiley-VCH, Weinheim (2004)Google Scholar
  24. 24.
    Liu, S., Wu, Y., Wei, E., Liu, M., Liu, Y.: StoryFlow: tracking the evolution of stories. IEEE Trans. Vis. Comput. Graph. 19(12), 2436–2445 (2013)CrossRefGoogle Scholar
  25. 25.
    Muelder, C.W., Crnovrsanin, T., Sallaberry, A., Ma, K.L.: Egocentric storylines for visual analysis of large dynamic graphs. In: Proceedings of the 2013 IEEE International Conference on Big Data, pp. 56–62 (2013)Google Scholar
  26. 26.
    Munroe, R.: xkcd #657: Movie Narrative Charts (2009). http://xkcd.com/657/
  27. 27.
    Nöllenburg, M., Völker, M., Wolff, A., Holten, D.: Drawing binary tanglegrams: an experimental evaluation. In: Finocchi, I., Hershberger, J. (eds.) Proceedings of the 11th Workshop on Algorithm Engineering and Experiments, ALENEX 2009, pp. 106–119. Society for Industrial and Applied Mathematics (2009)Google Scholar
  28. 28.
    Ogawa, M., Ma, K.L.: Software evolution storylines. In: Telea, A.C. (ed.) Proceedings of the 5th International Symposium on Software Visualization, SOFTVIS 2010, pp. 35–42. ACM (2010)Google Scholar
  29. 29.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981)MathSciNetCrossRefGoogle Scholar
  30. 30.
  31. 31.
    Tanahashi, Y., Hsueh, C.H., Ma, K.L.: An efficient framework for generating storyline visualizations from streaming data. IEEE Trans. Vis. Comput. Graph. 21(6), 730–742 (2015)CrossRefGoogle Scholar
  32. 32.
    Tanahashi, Y., Ma, K.L.: Design considerations for optimizing storyline visualizations. IEEE Trans. Vis. Comput. Graph. 18(12), 2679–2688 (2012)CrossRefGoogle Scholar
  33. 33.
    Vehlow, C., Beck, F., Auwärter, P., Weiskopf, D.: Visualizing the evolution of communities in dynamic graphs. Comput. Graph. Forum 34(1), 277–288 (2015)CrossRefGoogle Scholar
  34. 34.
    Wotzlaw, A., Speckenmeyer, E., Porschen, S.: Generalized \(k\)-ary tanglegrams on level graphs: a satisfiability-based approach and its evaluation. Discrete Appl. Math. 160(16–17), 2349–2363 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zimmer, K.: Ein Branch-and-Cut-Algorithmus für Mehrschichten-Kreuzungsmini-mierung. Master’s thesis, Institut für Informatik, Universität zu Köln (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Martin Gronemann
    • 1
  • Michael Jünger
    • 1
  • Frauke Liers
    • 2
  • Francesco Mambelli
    • 1
  1. 1.Department of Computer ScienceUniversity of CologneCologneGermany
  2. 2.Department of MathematicsUniversity of Erlangen-NürnbergErlangenGermany

Personalised recommendations