Advertisement

A Note on the Practicality of Maximal Planar Subgraph Algorithms

  • Markus Chimani
  • Karsten Klein
  • Tilo Wiedera
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9801)

Abstract

Given a graph G, the NP-hard Maximum Planar Subgraph problem (MPS) asks for a planar subgraph of G with the maximum number of edges. There are several heuristic, approximative, and exact algorithms to tackle the problem, but—to the best of our knowledge—they have never been compared competitively in practice.

We report on an exploratory study on the relative merits of the diverse approaches, focusing on practical runtime, solution quality, and implementation complexity. Surprisingly, a seemingly only theoretically strong approximation forms the building block of the strongest choice.

References

  1. 1.
    BarabasiAlbertGenerator of the java universal network/graph framework. http://jung.sourceforge.net
  2. 2.
    Batini, C., Talamo, M., Tamassia, R.: Computer aided layout of entity relationship diagrams. J. Syst. Softw. 4(2–3), 163–173 (1984)CrossRefGoogle Scholar
  3. 3.
    Boyer, J.M., Myrvold, W.J.: On the cutting edge: simplified \(\cal{O}(n)\) planarity by edge addition. J. Graph Algorithms Appl. 8(2), 241–273 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Călinescu, G., Fernandes, C., Finkler, U., Karloff, H.: A better approximation algorithm for finding planar subgraphs. J. Algorithms 27, 269–302 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.: The open graph drawing framework (OGDF). In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization, Chap. 17, pp. 543–569. CRC Press (2014). http://www.ogdf.net
  6. 6.
    Chimani, M., Gutwenger, C.: Non-planar core reduction of graphs. Discrete Math. 309(7), 1838–1855 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chimani, M., Gutwenger, C.: Advances in the planarization method: effective multiple edge insertions. J. Graph Algorithms Appl. 16(3), 729–757 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chimani, M., Hedtke, I., Wiedera, T.: Limits of greedy approximation algorithms for the maximum planar subgraph problem. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.) IWOCA 2016. LNCS, vol. 9843, pp. 334–346. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-44543-4_26 CrossRefGoogle Scholar
  9. 9.
    Chimani, M., Hlinený, P.: Inserting multiple edges into a planar graph. CoRR abs/1509.07952 (2015). http://arxiv.org/abs/1509.07952
  10. 10.
    Chimani, M., Mutzel, P., Schmidt, J.M.: Efficient extraction of multiple kuratowski subdivisions. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 159–170. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-77537-9_17 CrossRefGoogle Scholar
  11. 11.
    Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An experimental comparison of four graph drawing algorithms. Comput. Geom. 7(56), 303–325 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Di Battista, G., Garg, A., Liotta, G., Parise, A., Tassinari, R., Tassinari, E., Vargiu, F., Vismara, L.: Drawing directed acyclic graphs: an experimental study. Int. J. Comput. Geom. Appl. 10(06), 623–648 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hochstein, J.M., Weihe, K.: Maximum \(s\)-\(t\)-flow with \(k\) crossings in \(\cal{O}\)(k\(^3 n \log n)\). In: Proceedings of the SODA 2007, pp. 843–847. ACM-SIAM (2007)Google Scholar
  14. 14.
    Hsu, W.-L.: A linear time algorithm for finding a maximal planar subgraph based on PC-trees. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 787–797. Springer, Heidelberg (2005). doi: 10.1007/11533719_80 CrossRefGoogle Scholar
  15. 15.
    Jünger, M., Mutzel, P.: Maximum planar subgraphs and nice embeddings: practical layout tools. Algorithmica 16(1), 33–59 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Koch, T., Martin, A., Voß, S.: SteinLib: An updated library on steiner tree problems in graphs. Technical report ZIB-Report 00–37, Konrad-Zuse-Zentrum für Informationstechnik Berlin (2000). http://elib.zib.de/steinlib
  17. 17.
    Kuratowski, C.: Sur le problme des courbes gauches en topologie. Fundamenta Mathematicae 15(1), 271–283 (1930)zbMATHGoogle Scholar
  18. 18.
    Liu, P.C., Geldmacher, R.C.: On the deletion of nonplanar edges of a graph. In: Proceedings of the 10th Southeastern Conference on Combinatorics, Graph Theory and Computing, pp. 727–738 (1979). Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, ManGoogle Scholar
  19. 19.
    Shih, W., Hsu, W.: A new planarity test. Theor. Comput. Sci. 223(1–2), 179–191 (1999)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Steger, A., Wormald, N.C.: Generating random regular graphs quickly. Comb. Probab. Comput. 8(4), 377–396 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.University OsnabrückOsnabrückGermany
  2. 2.Uni KonstanzKonstanzGermany

Personalised recommendations