Advertisement

On the Density of Non-simple 3-Planar Graphs

  • Michael A. BekosEmail author
  • Michael Kaufmann
  • Chrysanthi N. Raftopoulou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9801)

Abstract

A k-planar graph is a graph that can be drawn in the plane such that every edge is crossed at most k times. For \(k \le 4\), Pach and Tóth [20] proved a bound of \((k+3)(n-2)\) on the total number of edges of a k-planar graph, which is tight for \(k=1,2\). For \(k=3\), the bound of \(6n-12\) has been improved to \(\frac{11}{2}n-11\) in [19] and has been shown to be optimal up to an additive constant for simple graphs. In this paper, we prove that the bound of \(\frac{11}{2}n-11\) edges also holds for non-simple 3-planar graphs that admit drawings in which non-homotopic parallel edges and self-loops are allowed. Based on this result, a characterization of optimal 3-planar graphs (that is, 3-planar graphs with n vertices and exactly \(\frac{11}{2}n-11\) edges) might be possible, as to the best of our knowledge the densest known simple 3-planar is not known to be optimal.

Keywords

Middle Part Jordan Curve Simple Graph Parallel Edge Free Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

We thank E. Ackerman for bringing to our attention [1] and [19].

References

  1. 1.
    Ackerman, E.: On topological graphs with at most four crossings per edge. CoRR abs/1509.01932 (2015)Google Scholar
  2. 2.
    Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs have a linear number of edges. Combinatorica 17(1), 1–9 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Auer, C., Brandenburg, F.J., Gleißner, A., Hanauer, K.: On sparse maximal 2-planar graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 555–556. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36763-2_50 CrossRefGoogle Scholar
  4. 4.
    Bekos, M.A., Bruckdorfer, T., Kaufmann, M., Raftopoulou, C.: 1-planar graphs have constant book thickness. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 130–141. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48350-3_12 CrossRefGoogle Scholar
  5. 5.
    Bekos, M.A., Kaufmann, M., Raftopoulou, C.N.: On the density of 3-planar graphs. CoRR abs/1602.04995v3 (2016)Google Scholar
  6. 6.
    Borodin, O.V.: A new proof of the 6 color theorem. J. Graph Theory 19(4), 507–521 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Brandenburg, F.J.: 1-visibility representations of 1-planar graphs. J. Graph Algorithms Appl. 18(3), 421–438 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brandenburg, F.J., Eppstein, D., Gleißner, A., Goodrich, M.T., Hanauer, K., Reislhuber, J.: On the density of maximal 1-planar graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 327–338. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36763-2_29 CrossRefGoogle Scholar
  9. 9.
    Cheong, O., Har-Peled, S., Kim, H., Kim, H.-S.: On the number of edges of fan-crossing free graphs. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp. 163–173. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-45030-3_16 CrossRefGoogle Scholar
  10. 10.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Upper Saddle River (1999)zbMATHGoogle Scholar
  11. 11.
    Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theoret. Comput. Sci. 412(39), 5156–5166 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dujmovic, V., Gudmundsson, J., Morin, P., Wolle, T.: Notes on large angle crossing graphs. Chicago J. Theor. Comput. Sci. 4, 1–14 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few crossings per edge. Algorithmica 49(1), 1–11 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Harary, F.: Graph Theory. Addison-Wesley, Boston (1991)zbMATHGoogle Scholar
  16. 16.
    Hong, S.-H., Nagamochi, H.: Testing full outer-2-planarity in linear time. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 406–421. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53174-7_29 CrossRefGoogle Scholar
  17. 17.
    Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs. CoRR abs/1403.6184 (2014)Google Scholar
  18. 18.
    Kaufmann, M., Wagner, D. (eds.): Drawing Graphs, Methods and Models. LNCS, vol. 2025. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  19. 19.
    Pach, J., Radoicic, R., Tardos, G., Tóth, G.: Improving the crossing lemma by finding more crossings in sparse graphs. Discrete Comput. Geom. 36(4), 527–552 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ringel, G.: Ein sechsfarbenproblem auf der kugel. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg (in German) 29, 107–117 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Tutte, W.T.: How to draw a graph. Proc. London Math. Soc. 3(13), 743–767 (1963)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Michael A. Bekos
    • 1
    Email author
  • Michael Kaufmann
    • 1
  • Chrysanthi N. Raftopoulou
    • 2
  1. 1.Institut für InformatikUniversität TübingenTubingenGermany
  2. 2.School of Applied Mathematics and Physical SciencesNTUAAthensGreece

Personalised recommendations