Advertisement

A Generalization of the Directed Graph Layering Problem

  • Ulf Rüegg
  • Thorsten Ehlers
  • Miro Spönemann
  • Reinhard von Hanxleden
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9801)

Abstract

The Directed Layering Problem (DLP) solves a step of the widely used layer-based approach to automatically draw directed acyclic graphs. To cater for cyclic graphs, usually a preprocessing step is used that solves the Feedback Arc Set Problem (FASP) to make the graph acyclic before a layering is determined.

Here we present the Generalized Layering Problem (GLP), which solves the combination of DLP and FASP simultaneously, allowing general graphs as input. We present an integer programming model and a heuristic to solve the NP-complete GLP and perform thorough evaluations on different sets of graphs and with different implementations for the steps of the layer-based approach.

We observe that GLP reduces the number of dummy nodes significantly, can produce more compact drawings, and improves on graphs where DLP yields poor aspect ratios.

Keywords

Layer-based layout Layer assignment Linear arrangement Feedback arc set Integer programming 

Notes

Acknowledgements

We thank Chris Mears for support regarding the initial IP formulation. We further thank Tim Dwyer and Petra Mutzel for valuable discussions. This work was supported by the German Research Foundation under the project Compact Graph Drawing with Port Constraints (ComDraPor, DFG HA 4407/8-1).

References

  1. 1.
    Brandes, U., Köpf, B.: Fast and simple horizontal coordinate assignment. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 31–44. Springer, Heidelberg (2002). doi: 10.1007/3-540-45848-4_3 CrossRefGoogle Scholar
  2. 2.
    Buchheim, C., Jünger, M., Leipert, S.: A fast layout algorithm for k-level graphs. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 229–240. Springer, Heidelberg (2001). doi: 10.1007/3-540-44541-2_22 CrossRefGoogle Scholar
  3. 3.
    Battista, G., Garg, A., Liotta, G., Parise, A., Tamassia, R., Tassinari, E., Vargiu, F., Vismara, L.: Drawing directed acyclic graphs: an experimental study. In: North, S. (ed.) GD 1996. LNCS, vol. 1190, pp. 76–91. Springer, Heidelberg (1997). doi: 10.1007/3-540-62495-3_39 CrossRefGoogle Scholar
  4. 4.
    Dwyer, T., Koren, Y.: DIG-COLA: directed graph layout through constrained energy minimization. In: Proceedings of the IEEE Symposium on Information Visualization (INFOVIS 2005), pp. 65–72, October 2005Google Scholar
  5. 5.
    Eades, P., Lin, X., Smyth, W.F.: A fast and effective heuristic for the feedback arc set problem. Inf. Process. Lett. 47(6), 319–323 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Eades, P., Sugiyama, K.: How to draw a directed graph. J. Inf. Process. 13(4), 424–437 (1990)zbMATHGoogle Scholar
  7. 7.
    Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.P.: A technique for drawing directed graphs. Softw. Eng. 19(3), 214–230 (1993)CrossRefGoogle Scholar
  8. 8.
    Gutwenger, C., von Hanxleden, R., Mutzel, P., Rüegg, U., Spönemann, M.: Examining the compactness of automatic layout algorithms for practical diagrams. In: Proceedings of the Workshop on Graph Visualization in Practice (GraphViP 2014), Melbourne, Australia, July 2014Google Scholar
  9. 9.
    Healy, P., Nikolov, N.S.: A branch-and-cut approach to the directed acyclic graph layering problem. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 98–109. Springer, Heidelberg (2002). doi: 10.1007/3-540-36151-0_10 CrossRefGoogle Scholar
  10. 10.
    Healy, P., Nikolov, N.S.: How to layer a directed acyclic graph. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 16–30. Springer, Heidelberg (2002). doi: 10.1007/3-540-45848-4_2 CrossRefGoogle Scholar
  11. 11.
    Healy, P., Nikolov, N.S.: Hierarchical drawing algorithms. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization, pp. 409–453. CRC Press, Boca Raton (2013)Google Scholar
  12. 12.
    McAllister, A.J.: A new heuristic algorithm for the linear arrangement problem. University of New Brunswick, Technical report (1999)Google Scholar
  13. 13.
    Nachmanson, L., Robertson, G., Lee, B.: Drawing graphs with GLEE. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 389–394. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-77537-9_38 CrossRefGoogle Scholar
  14. 14.
    Nikolov, N.S., Tarassov, A., Branke, J.: In search for efficient heuristics for minimum-width graph layering with consideration of dummy nodes. J. Exp. Algorithmics 10 (2005)Google Scholar
  15. 15.
    Pantrigo, J., Martí, R., Duarte, A., Pardo, E.: Scatter search for the cutwidth minimization problem. Ann. Oper. Res. 199(1), 285–304 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Rüegg, U., Ehlers, T., Spönemann, M., von Hanxleden, R.: A generalization of the directed graph layering problem. Technical report 1501, Kiel University, Department of Computer Science, ISSN 2192–6247, February 2015Google Scholar
  17. 17.
    Rüegg, U., Ehlers, T., Spönemann, M., von Hanxleden, R.: A generalization of the directed graph layering problem, August 2016. arXiv:1608.07809 [cs.OH]
  18. 18.
    Sander, G.: A fast heuristic for hierarchical Manhattan layout. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 447–458. Springer, Heidelberg (1996). doi: 10.1007/BFb0021828 CrossRefGoogle Scholar
  19. 19.
    Sander, G.: Layout of directed hypergraphs with orthogonal hyperedges. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 381–386. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24595-7_35 CrossRefGoogle Scholar
  20. 20.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Ulf Rüegg
    • 1
  • Thorsten Ehlers
    • 1
  • Miro Spönemann
    • 2
  • Reinhard von Hanxleden
    • 1
  1. 1.Department of Computer ScienceKiel UniversityKielGermany
  2. 2.TypeFox GmbHKielGermany

Personalised recommendations