Algorithms for Visualizing Phylogenetic Networks

  • Ioannis G. Tollis
  • Konstantinos G. KakoulisEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9801)


We study the problem of visualizing phylogenetic networks, which are extensions of the Tree of Life in biology. We use a space filling visualization method, called DAGmaps, in order to obtain clear visualizations using limited space. In this paper, we restrict our attention to galled trees and galled networks and present linear time algorithms for visualizing them as DAGmaps.


Horizontal Gene Transfer Directed Acyclic Graph Outgoing Edge Phylogenetic Network Incoming Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Irini Koutaki-Pantermaki who contributed some ideas in an earlier version of the paper, and Vassilis Tsiaras for useful discussions.


  1. 1.
    Arvelakis, A., Reczko, M., Stamatakis, A., Symeonidis, A., Tollis, I.G.: Using treemaps to visualize phylogenetic trees. In: Oliveira, J.L., Maojo, V., Martín-Sánchez, F., Pereira, A.S. (eds.) ISBMDA 2005. LNCS, vol. 3745, pp. 283–293. Springer, Heidelberg (2005). doi: 10.1007/11573067_29 CrossRefGoogle Scholar
  2. 2.
    Baehrecke, E.H., Dang, N., Babaria, K., Shneiderman, B.: Visualization and analysis of microarray and gene ontology data with treemaps. BMC Bioinform. 5(1), 1–12 (2004)CrossRefGoogle Scholar
  3. 3.
    Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward planarity testing of single-source digraphs. SIAM J. Comput. 27(1), 132–169 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Doolittle, W.F.: Phylogenetic classification and the universal tree. Science 284(5423), 2124–2129 (1999)CrossRefGoogle Scholar
  5. 5.
    Gusfield, D., Eddhu, S., Langley, C.H.: Efficient reconstruction of phylogenetic networks with constrained recombination. In: Computational Systems Bioinformatics Conference (Proceedings of the CSB 2003), pp. 363–374 (2003)Google Scholar
  6. 6.
    Hallett, M.T., Lagergren, J., Tofigh, A.: Simultaneous identification of duplications and lateral transfers. In: 8th Annual International Conference on Research in Computational Molecular Biology (Proceedings of the RECOMB 2004), pp. 347–356. Springer (2004)Google Scholar
  7. 7.
    Huson, D.H., Bryant, D.: Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23(2), 254–267 (2006)CrossRefGoogle Scholar
  8. 8.
    Huson, D.H., Klöpper, T.H.: Beyond galled trees - decomposition and computation of galled networks. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS, vol. 4453, pp. 211–225. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-71681-5_15 CrossRefGoogle Scholar
  9. 9.
    Huson, D.H., Rupp, R., Berry, V., Gambette, P., Paul, C.: Computing galled networks from real data. Bioinformatics 25(12), i85–i93 (2009)CrossRefGoogle Scholar
  10. 10.
    Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts, Algorithms and Applications. Cambridge University Press, Cambridge (2011)Google Scholar
  11. 11.
    Huson, D.H., Scornavacca, C.: A survey of combinatorial methods for phylogenetic networks. Genome Biol. Evol. 3, 23–35 (2011)CrossRefGoogle Scholar
  12. 12.
    Jansson, J., Lingas, A.: Computing the rooted triplet distance between galled trees by counting triangles. J. Discrete Algorithms 25, 66–78 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jansson, J., Nguyen, N.B., Sung, W.K.: Algorithms for combining rooted triplets into a galled phylogenetic network. SIAM J. Comput. 35(5), 1098–1121 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Johnson, B., Shneiderman, B., Tree-Maps : a space-filling approach to the visualization of hierarchical information structures. In: 2nd Conference on Visualization (Proceedings of the VIS 1991), pp. 284–291. IEEE Computer Society Press (1991)Google Scholar
  15. 15.
    Kuratowski, C.: Sur le problème des courbes gauches en topologie. Fundamenta Mathematica 16, 271–283 (1930)zbMATHGoogle Scholar
  16. 16.
    Linder, R.C., Rieseberg, L.H.: Reconstructing patterns of reticulate evolution in plants. Am. J. Bot. 91, 1700–1708 (2004)CrossRefGoogle Scholar
  17. 17.
    Maddison, W.P.: Gene trees in species trees. Syst. Biol. 46(3), 523–536 (1997)CrossRefGoogle Scholar
  18. 18.
    McConnell, P., Johnson, K., Lin, S.: Applications of tree-maps to hierarchical biological data. Bioinformatics 18(9), 1278–1279 (2002)CrossRefGoogle Scholar
  19. 19.
    Nakhleh, L., Warnow, T., Linder, R.C., Reconstructing reticulate evolution in species: theory and practice. In: 8th Annual International Conference on Resaerch in Computational Molecular Biology (Proceedings of the RECOMB 2004), pp. 337–346 (2004)Google Scholar
  20. 20.
    Symeonidis, A., Tollis, I.G., Reczko, M.: Visualization of functional aspects of microRNA regulatory networks using the gene ontology. In: Maglaveras, N., Chouvarda, I., Koutkias, V., Brause, R. (eds.) ISBMDA 2006. LNCS, vol. 4345, pp. 13–24. Springer, Heidelberg (2006). doi: 10.1007/11946465_2 CrossRefGoogle Scholar
  21. 21.
    Tao, Y., Liu, Y., Friedman, C., Lussier, Y.A.: Information visualization techniques in bioinformatics during the postgenomic era. Drug Discov. Today BIOSILICO 2(6), 237–245 (2004)CrossRefGoogle Scholar
  22. 22.
    Tsiaras, V., Triantafilou, S., Tollis, I.G.: DAGmaps: space filling visualization of directed acyclic graphs. Graph Algorithms Appl. 13(3), 319–347 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination. J. Comput. Biol. 8(1), 69–78 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of CreteHeraklionGreece
  2. 2.Department of Mechanical and Industrial Design EngineeringT.E.I. of West MacedoniaKozaniGreece

Personalised recommendations