Advertisement

Snapping Graph Drawings to the Grid Optimally

  • Andre LöfflerEmail author
  • Thomas C. van Dijk
  • Alexander Wolff
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9801)

Abstract

In geographic information systems and in the production of digital maps for small devices with restricted computational resources one often wants to round coordinates to a rougher grid. This removes unnecessary detail and reduces space consumption as well as computation time. This process is called snapping to the grid and has been investigated thoroughly from a computational-geometry perspective. In this paper we investigate the same problem for given drawings of planar graphs under the restriction that their combinatorial embedding must be kept and edges are drawn straight-line. We show that the problem is NP-hard for several objectives and provide an integer linear programming formulation. Given a plane graph G and a positive integer w, our ILP can also be used to draw G straight-line on a grid of width w and minimum height (if possible).

Keywords

Integer Linear Program Cyclic Order Integer Linear Programming Formulation Graph Drawing Polygonal Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Gergely Mincsovics for suggesting this problem to us.

References

  1. 1.
    Chinneck, J.W.: Feasibility and Infeasibility in Optimization: Algorithms and Computational Methods. International Series in Operations Research and Management Science, vol. 118. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  2. 2.
    Chrobak, M., Nakano, S.-I.: Minimum-width grid drawings of plane graphs. Comput. Geom. 11(1), 29–54 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    de Berg, M., Halperin, D., Overmars, M.: An intersection-sensitive algorithm for snap rounding. Comput. Geom. 36(3), 159–165 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the plane. Int. J. Comput. Geom. Appl. 22(03), 187–205 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    De Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics–A Foundation for Computer Science. Addison-Wesley, Reading (1994)zbMATHGoogle Scholar
  7. 7.
    Guibas, L.J., Marimont, D.H.: Rounding arrangements dynamically. Int. J. Comput. Geom. Appl. 8(2), 157–178 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kieffer, S., Dwyer, T., Marriott, K., Wybrow, M.: Incremental grid-like layout using soft and hard constraints. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 448–459. Springer, Heidelberg (2013). doi: 10.1007/978-3-319-03841-4_39 CrossRefGoogle Scholar
  9. 9.
    Krug, M., Wagner, D.: Minimizing the area for planar straight-line grid drawings. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 207–212. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-77537-9_21 CrossRefGoogle Scholar
  10. 10.
    Löffler, A., van Dijk, T.C., Wolff, A.: Snapping graph drawings to the grid optimally. Arxiv report arXiv.org/abs/1608.08844 (2016)
  11. 11.
    McCarl, B.A., Spreen, T.H.: Applied mathematical programming using algebraic systems. Texas A&M University (1997)Google Scholar
  12. 12.
    Nöllenburg, M.: Automated drawing of metro maps. Master’s thesis, Fakultät für Informatik, Universität Karlsruhe (2005). http://www.ubka.uni-karlsruhe.de/indexer-vvv/ira/2005/25
  13. 13.
    Nöllenburg, M., Wolff, A.: Drawing and labeling high-quality metro maps by mixed-integer programming. IEEE Trans. Visual. Comput. Graphics 17(5), 626–641 (2011)CrossRefGoogle Scholar
  14. 14.
    Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of 1st ACM-SIAM Symposium on Discrete Algorithms (SODA 1990), pp. 138–148 (1990)Google Scholar
  15. 15.
    Tutte, W.T.: How to draw a graph. Proc. London Math. Soc. 13(52), 743–768 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Wolff, A.: Drawing subway maps: A survey. Informatik - Forschung & Entwicklung 22(1), 23–44 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Andre Löffler
    • 1
    Email author
  • Thomas C. van Dijk
    • 1
  • Alexander Wolff
    • 1
  1. 1.Lehrstuhl Für Informatik IUniversität WürzburgWürzburgGermany

Personalised recommendations