Advertisement

Non-aligned Drawings of Planar Graphs

  • Therese Biedl
  • Claire PennarunEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9801)

Abstract

A non-aligned drawing of a graph is a drawing where no two vertices are in the same row or column. Auber et al. showed that not all planar graphs have a non-aligned planar straight-line drawing in the \(n\times n\)-grid. They also showed that such a drawing exists if up to \(n-3\) edges may have a bend.

In this paper, we give algorithms for non-aligned planar drawings that improve on the results by Auber et al. In particular, we give such drawings in an \(n\times n\)-grid with at most \(\frac{2n-5}{3}\) bends, and we study what grid-size can be achieved if we insist on having straight-line drawings.

References

  1. 1.
    Alamdari, S., Biedl, T.: Planar open rectangle-of-influence drawings with non-aligned frames. In: Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 14–25. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-25878-7_3 CrossRefGoogle Scholar
  2. 2.
    Auber, D., Bonichon, N., Dorbec, P., Pennarun, C.: Rook-drawing for plane graphs. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 180–191. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-27261-0_15 CrossRefGoogle Scholar
  3. 3.
    Baker, B.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41(1), 153–180 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Biedl, T., Derka, M.: The (3,1)-canonical order. J. Gr. Algorithms Appl. 20(2), 347–362 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Biedl, T., Bretscher, A., Meijer, H.: Rectangle of influence drawings of graphs without filled 3-cycles. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 359–368. Springer, Heidelberg (1999). doi: 10.1007/3-540-46648-7_37 CrossRefGoogle Scholar
  6. 6.
    Biedl, T., Kant, G., Kaufmann, M.: On triangulating planar graphs under the four-connectivity constraint. Algorithmica 19(4), 427–446 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cardinal, J., Hoffmann, M., Kusters, V., Tóth, C.D., Wettstein, M.: Arc diagrams, flip distances, and Hamiltonian triangulations. In: Symposium on Theoretical Aspects of Computer Science, STACS 2015. LIPIcs, vol. 30, pp. 197–210 (2015)Google Scholar
  8. 8.
    Chrobak, M., Kant, G.: Convex grid drawings of 3-connected planar graphs. Int. J. Comput. Geom. Appl. 7(3), 211–223 (1997)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Di Giacomo, E., Didimo, W., Kaufmann, M., Liotta, G., Montecchiani, F.: Upward-rightward planar drawings. In: Information, Intelligence, Systems and Applications (IISA 2014), pp. 145–150. IEEE (2014)Google Scholar
  10. 10.
    Dolev, D., Leighton, F.T., Trickey, H.W.: Planar embedding of planar graphs. Adv. Comput. Res. 2, 147–161 (1984)Google Scholar
  11. 11.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10, 41–51 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gabow, H.N., Tarjan, R.E.: Faster scaling agorithms for general graph matching problems. J. ACM 38, 815–853 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kaufmann, M., Wiese, R.: Embedding vertices at points: few bends suffice for planar graphs. J. Gr. Algorithms Appl. 6(1), 115–129 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Liotta, G., Lubiw, A., Meijer, H., Whitesides, S.: The rectangle of influence drawability problem. Comput. Geom. 10(1), 1–22 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Da Lozzo, G., Dujmović, V., Frati, F., Mchedlidze, T., Roselli, V.: Drawing planar graphs with many collinear vertices. In: Nöllenberg, M., Hu, Y. (eds.) GD 2016. LNCS, vol. 9801, pp. 152–165. Springer, Heidelberg (2016)Google Scholar
  16. 16.
    Schnyder, W.: Embedding planar graphs on the grid. In: ACM-SIAM Symposium on Discrete Algorithms (SODA 1990), pp. 138–148 (1990)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.David R. Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada
  2. 2.University of Bordeaux, CNRS, LaBRI, UMR 5800TalenceFrance

Personalised recommendations