1-Bend Upward Planar Drawings of SP-Digraphs

  • Emilio Di Giacomo
  • Giuseppe Liotta
  • Fabrizio MontecchianiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9801)


It is proved that every series-parallel digraph whose maximum vertex-degree is \(\varDelta \) admits an upward planar drawing with at most one bend per edge such that each edge segment has one of \(\varDelta \) distinct slopes. This is shown to be worst-case optimal in terms of the number of slopes. Furthermore, our construction gives rise to drawings with optimal angular resolution \(\frac{\pi }{\varDelta }\). A variant of the proof technique is used to show that (non-directed) reduced series-parallel graphs and flat series-parallel graphs have a (non-upward) one-bend planar drawing with \(\lceil \frac{\varDelta }{2}\rceil \) distinct slopes if biconnected, and with \(\lceil \frac{\varDelta }{2}\rceil +1\) distinct slopes if connected.


Planar Graph Decomposition Tree Vertical Segment Horizontal Segment Outerplanar Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward planarity testing of single-source digraphs. SIAM J. Comput. 27(1), 132–169 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Biedl, T.C., Kant, G.: A better heuristic for orthogonal graph drawings. Comput. Geom. 9(3), 159–180 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Binucci, C., Didimo, W., Giordano, F.: Maximum upward planar subgraphs of embedded planar digraphs. Comput. Geom. 41(3), 230–246 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Czyzowicz, J.: Lattice diagrams with few slopes. J. Comb. Theory Ser. A 56(1), 96–108 (1991). MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Czyzowicz, J., Pelc, A., Rival, I.: Drawing orders with few slopes. Discret. Math. 82(3), 233–250 (1990). MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice-Hall, Upper Saddle River (1999)zbMATHGoogle Scholar
  7. 7.
    Di Giacomo, E., Liotta, G., Montecchiani, F.: 1-Bend Upward Planar Drawings of SP-Digraphs. ArXiv e-prints abs/1608.08425 (2016).
  8. 8.
    Di Giacomo, E.: Drawing series-parallel graphs on restricted integer 3D grids. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 238–246. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24595-7_22 CrossRefGoogle Scholar
  9. 9.
    Di Giacomo, E., Liotta, G., Montecchiani, F.: The planar slope number of subcubic graphs. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 132–143. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54423-1_12 CrossRefGoogle Scholar
  10. 10.
    Di Giacomo, E., Liotta, G., Montecchiani, F.: Drawing outer 1-planar graphs with few slopes. J. Graph. Algorithms Appl. 19(2), 707–741 (2015). MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Didimo, W.: Upward planar drawings and switch-regularity heuristics. J. Graph Algorithms Appl. 10(2), 259–285 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Didimo, W., Giordano, F., Liotta, G.: Upward spirality and upward planarity testing. SIAM J. Discret. Math. 23(4), 1842–1899 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jelínek, V., Jelínková, E., Kratochvíl, J., Lidický, B., Tesar, M., Vyskocil, T.: The planar slope number of planar partial 3-trees of bounded degree. Gr. Combin. 29(4), 981–1005 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing planar graphs of bounded degree with few slopes. SIAM J. Discret. Math. 27(2), 1171–1183 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Knauer, K., Walczak, B.: Graph drawings with one bend and few slopes. In: Kranakis, E., Navarro, G., Chávez, E. (eds.) LATIN 2016. LNCS, vol. 9644, pp. 549–561. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49529-2_41 CrossRefGoogle Scholar
  17. 17.
    Knauer, K.B., Micek, P., Walczak, B.: Outerplanar graph drawings with few slopes. Comput. Geom. 47(5), 614–624 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lenhart, W., Liotta, G., Mondal, D., Nishat, R.I.: Planar and plane slope number of partial 2-trees. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 412–423. Springer, Heidelberg (2013). doi: 10.1007/978-3-319-03841-4_36 CrossRefGoogle Scholar
  19. 19.
    Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientations of planar graphs. Discr. Comput. Geom. 1, 343–353 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Tamassia, R., Tollis, I.G.: A unified approach a visibility representation of planar graphs. Discr. Comput. Geom. 1, 321–341 (1986)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Emilio Di Giacomo
    • 1
  • Giuseppe Liotta
    • 1
  • Fabrizio Montecchiani
    • 1
    Email author
  1. 1.Dip. di IngegneriaUniversità Degli Studi di PerugiaPerugiaItaly

Personalised recommendations