Skip to main content

Techno-Economic Study and Environmental Assessment of Food Waste Based Biorefinery

  • Chapter
  • First Online:
Food Waste Reduction and Valorisation

Abstract

Sustainability consists of three major components, namely economic, ecological and social impacts. The most important driver for food waste based biorefinery is whether the proposed design is profitable. The development of highly efficient and cost-effective biorefineries is a prerequisite for such a bio-based economy. There are many factors that influence the overall costs and returns of the food waste based biorefinery process, and affect the overall economic performance as well. In this chapter, the economic and environmental impacts of food waste based biorefinery is evaluated by using Techno-economic Study and Life Cycle Assessment (LCA) in terms of non-renewable energy use (NREU) and greenhouse gases (GHG) emission. Special focus on the economics of Green Chemistry, and the current status of LCA studies on succinic acid and thermochemical processes for biomass conversion to biofuels are covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbor E, Zhang X, Kumar A (2014) A review of biomass co-firing in North America. Renew Sustain Energy Rev 40:930–943

    Article  Google Scholar 

  • Andric I, Jamali-Zghal N, Santarelli M, Lacarriere B, Le Corre O (2015) Environmental performance assessment of retrofitting existing coal fired power plants to co-firing with biomass: carbon footprint and energy approach. J Clean Prod 103:13–27

    Article  Google Scholar 

  • Arafat HA, Jijakli K, Ahsan A (2013) Environmental performance and energy recovery potential of five processes for municipal solid waste treatment. J Clean Prod

    Google Scholar 

  • Assamoi B, Lawryshyn Y (2012) The environmental comparison of landfilling versus incineration of MSW accounting for waste diversion. Waste Manag 32(5):1019–1030

    Article  Google Scholar 

  • Astrup TF, Tonini D, Turconi R, Boldrin A (2015) Life cycle assessment of thermal Waste-to-Energy technologies: review and recommendations. Waste Manag 37:104–115

    Article  Google Scholar 

  • Atimtay AT, Topal H (2004) Co-combustion of olive cake with lignite coal in a circulating fluidized bed. Fuel 83(7–8):859–867

    Article  Google Scholar 

  • Autret E, Berthier F, Luszezanec A, Nicolas F (2007) Incineration of municipal and assimilated wastes in France: assessment of latest energy and material recovery performances. J Hazard Mater 139(3):569–574

    Article  Google Scholar 

  • Basso D, Patuzzi F, Castello D, Baratieri M, Rada EC, Weiss-Hortala E, Fiori L (2015) Agro-industrial waste to solid biofuel through hydrothermal carbonization. Waste Manag 2015

    Google Scholar 

  • Berge ND, Li L, Flora JR, Ro KS (2015) Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization of food wastes. Waste Manag 43:203–217

    Article  Google Scholar 

  • Berge ND, Ro KS, Mao J, Flora JR, Chappell MA, Bae S (2011) Hydrothermal carbonization of municipal waste streams. Environ Sci Technol 45(13):5696–5703

    Article  Google Scholar 

  • Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91(2–3):87–102

    Article  Google Scholar 

  • Brown TR (2015) A techno-economic review of thermochemical cellulosic biofuel pathways. Bioresour Technol 178:166–176

    Article  Google Scholar 

  • Caserini S, Livio S, Giugliano M, Grosso M, Rigamonti L (2010) LCA of domestic and centralized biomass combustion: the case of Lombardy (Italy). Biomass Bioenergy 34(4):474–482

    Article  Google Scholar 

  • Chedea VS, Kefalas P, Socaciu C (2010) Patterns of carotenoid pigments extracted from two orange peel wastes (Valencia and navel var.). J Food Biochem 34(1):101–110

    Article  Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51(7):1412–1421

    Article  Google Scholar 

  • Christoforou EA, Fokaides PA (2015) A review of quantification practices for plant-derived biomass potential. Int J Green Energy 12(4):368–378

    Article  Google Scholar 

  • Clark JH, Deswarte FEI, Farmer TJ (2009) The integration of green chemistry into future biorefineries. Biofuels Bioproducts and Biorefining-Biofpr 3(1):72–90

    Article  Google Scholar 

  • Cok B, Tsiropoulos I, Roes AL, Patel MK (2014) Succinic acid production derived from carbohydrates: an energy and greenhouse gas assessment of a platform chemical toward a bio-based economy. Biofuels Bioproducts and Biorefining-Biofpr 8(1):16–29

    Article  Google Scholar 

  • Corti A, Lombardi L (2004) Biomass integrated gasification combined cycle with reduced CO2 emissions: performance analysis and life cycle assessment (LCA). Energy 29(12):2109–2124

    Article  Google Scholar 

  • Dang Q, Yu C, Luo Z (2014) Environmental life cycle assessment of bio-fuel production via fast pyrolysis of corn stover and hydroprocessing. Fuel 131:36–42

    Article  Google Scholar 

  • Dzikuc M, Piwowar A (2016) Ecological and economic aspects of electric energy production using the biomass co-firing method: the case of Poland. Renew Sustain Energy Rev 55:856–862

    Article  Google Scholar 

  • Encinar JM, Gonzalez JF, Martinez G, Gonzalez JM (2008) Two stages catalytic pyrolysis of olive oil waste. Fuel Process Technol 89(12):1448–1455

    Article  Google Scholar 

  • Fan J, Kalnes TN, Alward M, Klinger J, Sadehvandi A, Shonnard DR (2011) Life cycle assessment of electricity generation using fast pyrolysis bio-oil. Renewable Energy 36(2):632–641

    Article  Google Scholar 

  • Food wastage footprint: Impacts on natural resources (2013) http://www.fao.org/docrep/018/i3347e/i3347e.pdf

  • Food waste. http://www.unido.org/fileadmin/import/32068_35FoodWastes

  • Fruergaard T, Hyks J, Astrup T (2010) Life-cycle assessment of selected management options for air pollution control residues from waste incineration. Sci Total Environ 408(20):4672–4680

    Article  Google Scholar 

  • Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioprod Biorefin 4:160–177

    Article  Google Scholar 

  • Gonzalez MI, Alvarez S, Riera F, Alvarez R (2007) Economic evaluation of an integrated process for lactic acid production from ultrafiltered whey. J Food Eng 80(2):553–561

    Article  Google Scholar 

  • Gustavsson J, Cederberg C, Sonesson U, Otterdijk RV, Meybeck A (2011) Global food losses and food waste. In: Extent, causes and prevention, vol 38. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • Gustavsson JCC, Sonesson U, Emanuelsson A (2013) The methodology of the FOA study: global food losses and food waste-extent, causes and prevention, vol 38. The Swedish Institute for Food and Biotechnology, Gothenburg, Sweden

    Google Scholar 

  • He Y, Bagley DM, Leung KT, Liss SN, Liao B-Q (2012) Recent advances in membrane technologies for biorefining and bioenergy production. Biotechnol Adv 30(4):817–858

    Article  Google Scholar 

  • Heidenreich S, Foscolo PU (2015) New concepts in biomass gasification. Prog Energy Combust Sci 46:72–95

    Article  Google Scholar 

  • Heilmann SM, Jader LR, Sadowsky MJ, Schendel FJ, Von Keitz MG, Valentas KJ (2011) Hydrothermal carbonization of distiller’s grains. Biomass Bioenergy 35(7):2526–2533

    Article  Google Scholar 

  • Huang Y, Syu F, Chiueh P, Lo S (2013) Life cycle assessment of biochar cofiring with coal. Bioresour Technol 131:166–171

    Article  Google Scholar 

  • Huff MD, Kumar S, Lee JW (2014) Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis. J Environ Manage 146:303–308

    Article  Google Scholar 

  • Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M et al (2001) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol. Colorado, U.S

    Google Scholar 

  • Hwang I-H, Aoyama H, Matsuto T, Nakagishi T, Matsuo T (2012) Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water. Waste Manag 32(3):410–416

    Article  Google Scholar 

  • Indicative Chemical Prices A-Z. http://www.icis.com/chemicals/channel-info-chemicals-a-z/

  • Iribarren D, Peters JF, Dufour J (2012) Life cycle assessment of transportation fuels from biomass pyrolysis. Fuel 97:812–821

    Article  Google Scholar 

  • Jahirul MI, Rasul MG, Chowdhury AA, Ashwath N (2012) Biofuels production through biomass pyrolysis-a technological review. Energies 5(12):4952–5001

    Article  Google Scholar 

  • Kalk J, Langlykke A (1986) ASM manual of industrial microbiology and biotechnology. In: Li Q, Hu G (eds) Techno-economic analysis of biofuel production considering logistic configurations, vol 206. Bioresource Technology 2016, pp 195–203

    Google Scholar 

  • Kim MH, Song HB, Song Y, Jeong IT, Kim JW (2013) Evaluation of food waste disposal options in terms of global warming and energy recovery: Korea. Int J Energy Environ Eng 4(1):1–12

    Article  Google Scholar 

  • Kimming M, Sundberg C, Nordberg Ã…, Baky A, Bernesson S, Norén O, Hansson P-A (2011) Biomass from agriculture in small-scale combined heat and power plants—a comparative life cycle assessment. Biomass Bioenergy 35(4):1572–1581

    Article  Google Scholar 

  • Kiran EU, Trzcinski AP, Ng WJ, Liu Y (2014) Bioconversion of food waste to energy: a review. Fuel 134:389–399

    Article  Google Scholar 

  • Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109(4):1083–1087

    Article  Google Scholar 

  • Kwan TH, Pleissner D, Lau KY, Venus J, Pommeret A, Lin CSK (2015) Techno-economic analysis of a food waste valorization process via microalgae cultivation and co-production of plasticizer, lactic acid and animal feed from algal biomass and food waste. Bioresour Technol 198:292–299

    Article  Google Scholar 

  • Kylili A, Christoforou E, Fokaides PA (2016) Environmental evaluation of biomass pelleting using life cycle assessment. Biomass Bioenergy 84:107–117

    Article  Google Scholar 

  • Lam KF, Leung CCJ, Lei HM, Lin CSK (2014) Economic feasibility of a pilot-scale fermentative succinic acid production from bakery wastes. Food Bioprod Process 92(C3):282–290

    Article  Google Scholar 

  • Leung CCJ, Cheung ASY, Zhang AY-Z, Lam KF, Lin CSK (2012) Utilisation of waste bread for fermentative succinic acid production. Biochem Eng J 65:10–15

    Article  Google Scholar 

  • Li J, Paul MC, Younger PL, Watson I, Hossain M, Welch S (2015) Characterization of biomass combustion at high temperatures based on an upgraded single particle model. Appl Energy 156:749–755

    Article  Google Scholar 

  • Li Q, Hu G (2016) Techno-economic analysis of biofuel production considering logistic configurations. Bioresour Technol 206:195–203

    Google Scholar 

  • Liamsanguan C, Gheewala SH (2007) Environmental assessment of energy production from municipal solid waste incineration. Int J Life Cycle Assess 12(7):529–536

    Article  Google Scholar 

  • Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici M-M, Fühner C, Bens O, Kern J (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2(1):71–106

    Article  Google Scholar 

  • Lin CSK, Koutinas AA, Stamatelatou K, Mubofu EB, Matharu AS, Kopsahelis N, Pfaltzgraff LA, Clark JH, Papanikolaou S, Kwan TH et al (2014) Current and future trends in food waste valorization for the production of chemicals, materials and fuels: a global perspective. Biofuels, Bioprod Biorefin 8(5):686–715

    Article  Google Scholar 

  • Lin CSK, Pfaltzgraff LA, Herrero-Davila L, Mubofu EB, Abderrahim S, Clark JH, Koutinas AA, Kopsahelis N, Stamatelatou K, Dickson F et al (2013) Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ Sci 6(2):426–464

    Article  Google Scholar 

  • Liu Z, Balasubramanian R (2012) Hydrothermal carbonization of waste biomass for energy generation. Proc Environ Sci 16:159–166

    Article  Google Scholar 

  • Lu W, Zhang T (2010) Life-cycle implications of using crop residues for various energy demands in China. Environ Sci Technol 44(10):4026–4032

    Article  Google Scholar 

  • Luque R, Herrero-Davila L, Campelo JM, Clark JH, Hidalgo JM, Luna D, Marinas JM, Romero AA (2008) Biofuels: a technological perspective. Energy Environ Sci 1(5):542–564

    Article  Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83(1):47–54

    Article  Google Scholar 

  • McKinlay JB, Vieille C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76(4):727–740

    Article  Google Scholar 

  • Monitoring of solid waste in Hong Kong—waste statistics for 2013 [http://www.epd.gov.hk/epd/english/environmentinhk/waste/data/stat_treat.html]

  • Mussatto SI, Dragone G, Roberto IC (2006) Brewers’ spent grain: generation, characteristics and potential applications. J Cereal Sci 43(1):1–14

    Article  Google Scholar 

  • Nguyen TLT, Hermansen JE, Nielsen RG (2013) Environmental assessment of gasification technology for biomass conversion to energy in comparison with other alternatives: the case of wheat straw. J Clean Prod 53:138–148

    Article  Google Scholar 

  • Ohkouchi Y, Inoue Y (2007) Impact of chemical components of organic wastes on L(+)-lactic acid production. Bioresour Technol 98(3):546–553

    Article  Google Scholar 

  • Oliveira I, Blöhse D, Ramke H-G (2013) Hydrothermal carbonization of agricultural residues. Bioresour Technol 142:138–146

    Article  Google Scholar 

  • Orjuela A, Orjuela A, Lira CT, Miller DJ (2013) A novel process for recovery of fermentation-derived succinic acid: Process design and economic analysis. Bioresour Technol 139:235–241

    Article  Google Scholar 

  • Pala M, Kantarli IC, Buyukisik HB, Yanik J (2014) Hydrothermal carbonization and torrefaction of grape pomace: a comparative evaluation. Bioresour Technol 161:255–262

    Article  Google Scholar 

  • Peters G (2010) Life cycle assessment: principles, practice and prospects. Australasian J Environ Manage 17(3):190–191

    MathSciNet  Google Scholar 

  • Peters JF, Iribarren D, Dufour J (2015) Simulation and life cycle assessment of biofuel production via fast pyrolysis and hydroupgrading. Fuel 139:441–456

    Article  Google Scholar 

  • Pleissner D, Lam WC, Sun Z, Lin CSK (2013) Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresour Technol 137:139–146

    Article  Google Scholar 

  • Ravindran R, Jaiswal AK (2016) Exploitation of food industry waste for high-value products. Trends Biotechnol 34(1):58–69

    Article  Google Scholar 

  • Riber C, Hander GS, Christensen TH (2008) Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE). Waste Manage Res 26(1):96–103

    Article  Google Scholar 

  • Roberts KG, Gloy BA, Joseph S, Scott NR, Lehmann J (2009) Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential. Environ Sci Technol 44(2):827–833

    Article  Google Scholar 

  • Reza MT, Uddin MH, Lynam JG, Coronella CJ (2014) Engineered pellets from dry torrefied and HTC biochar blends. Biomass Bioenergy 63:229–238

    Article  Google Scholar 

  • Schnepf R, Yacobucci BD (2011) Renewable fuel standard (RFS): overview and issues. Library of Congress. Congressional Research Service, Washington

    Google Scholar 

  • Sebastian F, Royo J, Gomez M (2011) Cofiring versus biomass-fired power plants: GHG (Greenhouse Gases) emissions savings comparison by means of LCA (Life Cycle Assessment) methodology. Energy 36(4):2029–2037

    Article  Google Scholar 

  • Shahidi F, Synowiecki J (1991) Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards. J Agric Food Chem 39(8):1527–1532

    Article  Google Scholar 

  • Standardization IOf (2006) Environmental management-life cycle assessment-principles and framework. In: ISO 14040; 01 July 2006. Geneva: ISO

    Google Scholar 

  • Sun A, Davis R, Starbuck M, Ben-Amotz A, Pate R, Pienkos PT (2011) Comparative cost analysis of algal oil production for biofuels. Energy 36(8):5169–5179

    Article  Google Scholar 

  • Sun Z, Li M, Qi Q, Gao C, Lin CSK (2014) Mixed food waste as renewable feedstock in succinic acid fermentation. Appl Biochem Biotechnol 174(5):1822–1833

    Article  Google Scholar 

  • Tahergorabi R, Beamer SK, Matak KE, Jaczynski J (2011) Effect of isoelectric solubilization/precipitation and titanium dioxide on whitening and texture of proteins recovered from dark chicken-meat processing by-products. Lwt-Food Sci Technol 44(4):896–903

    Article  Google Scholar 

  • Tejayadi S, Cheryan M (1995) Lactic acid from cheese whey permeate. Productivity and economics of a continuous membrane bioreactor. Appl Microbiol Biotechnol 43(2):242–248

    Google Scholar 

  • Titirici MM, Thomas A, Antonietti M (2007) Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J Chem 31(6):787–789

    Article  Google Scholar 

  • Tyskeng S, Finnveden G (2010) Comparing energy use and environmental impacts of recycling and waste incineration. J Environ Eng Asce 136(8):744–748

    Article  Google Scholar 

  • Van Dien S (2013) From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals. Curr Opin Biotechnol 24(6):1061–1068

    Article  Google Scholar 

  • Van Loo S, Koppejan J (2012) The handbook of biomass combustion and co-firing. Routledge, Earthscan, London, United Kingdom

    Google Scholar 

  • Vlysidis A, Binns M, Webb C, Theodoropoulos C (2011) A techno-economic analysis of biodiesel biorefineries: assessment of integrated designs for the co-production of fuels and chemicals. Energy 36(8):4671–4683

    Article  Google Scholar 

  • Wang L, Templer R, Murphy RJ (2012) A life cycle assessment (LCA) comparison of three management options for waste papers: bioethanol production, recycling and incineration with energy recovery. Bioresour Technol 120:89–98

    Article  Google Scholar 

  • Williams AR (2009) Life cycle analysis: a step by step approach. The authority of the State of Illinois, Illinois

    Google Scholar 

  • Wu K, Chein R (2015) Modeling of biomass gasification with preheated air at high temperatures. Energy Proc 75:214–219

    Article  Google Scholar 

  • Xiao L-P, Shi Z-J, Xu F, Sun R-C (2012) Hydrothermal carbonization of lignocellulosic biomass. Bioresour Technol 118:619–623

    Article  Google Scholar 

  • Xu C, Shi W, Hong J, Zhang F, Chen W (2015) Life cycle assessment of food waste-based biogas generation. Renew Sustain Energy Rev 49:169–177

    Article  Google Scholar 

  • Yang J, Chen B (2014) Global warming impact assessment of a crop residue gasification project A dynamic LCA perspective. Appl Energy 122:269–279

    Article  Google Scholar 

  • Yang X, Zhu M, Huang X, Lin CSK, Wang J, Li S (2015) Valorisation of mixed bakery waste in non-sterilized fermentation for L-lactic acid production by an evolved Thermoanaerobacterium sp strain. Bioresour Technol 198:47–54

    Article  Google Scholar 

  • Yi YM (2016) Life cycle assessment studies of food waste base biorefinery. City University of Hong Kong project, Hong Kong

    Google Scholar 

  • Zhang AYZ, Sun Z, Leung CCJ, Han W, Lau KY, Li MJ, Lin CSK (2013a) Valorisation of bakery waste for succinic acid production. Green Chem 15(3):690–695

    Article  Google Scholar 

  • Zhang C, Xiao G, Peng L, Su H, Tan T (2013b) The anaerobic co-digestion of food waste and cattle manure. Bioresour Technol 129:170–176

    Article  Google Scholar 

  • Zhong Z, Song B, Zaki M (2010) Life-cycle assessment of flash pyrolysis of wood waste. J Clean Prod 18(12):1177–1183

    Article  Google Scholar 

  • Zorya S, Morgan N, Rios LD, Hodges R, Bennett B (2011) Missing food: the case of postharvest grain losses in sub-Saharan Africa. The World Bank, Washington

    Google Scholar 

  • Zuwala J (2012) Life cycle approach for energy and environmental analysis of biomass and coal co-firing in CHP plant with backpressure turbine. J Clean Prod 35:164–175

    Article  Google Scholar 

Download references

Acknowledgements

C.S.K. Lin, Elias A. Christoforou and Paris A. Fokaides gratefully acknowledge the contribution of the COST Action FP1306. C.S.K. Lin also acknowledges the contribution of the COST Action TD1203-EUBis. Mr. Huaimin Wang (Research assistant from C.S.K Lin’s research group) is acknowledged for his assistance in compiling the references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol Sze Ki Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pommeret, A., Yang, X., Kwan, T.H., Christoforou, E.A., Fokaides, P.A., Lin, C.S.K. (2017). Techno-Economic Study and Environmental Assessment of Food Waste Based Biorefinery. In: Morone, P., Papendiek, F., Tartiu, V. (eds) Food Waste Reduction and Valorisation. Springer, Cham. https://doi.org/10.1007/978-3-319-50088-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50088-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50087-4

  • Online ISBN: 978-3-319-50088-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics