Municipal Waste Treatment, Technological Scale up and Commercial Exploitation: The Case of Bio-waste Lignin to Soluble Lignin-like Polymers



The present chapter addresses municipal bio-waste, as worldwide easily available concentrated source of organic matter to convert to and recycle as valuable products for further use. Municipal bio-waste contains polysaccharides and lignin as major components. On the other hand, these are major components of biomass, generally. This implies that technology used for treating municipal bio-waste is likely applicable to other bio wastes, as well. Current biomass treatment technology addresses mainly the production of biofuel by fermentation of the polysaccharide fraction. Lignin is an insoluble recalcitrant material withstanding biochemical and chemical treatment. It inhibits fermentation microorganisms. Thus, the separation of lignin from the fermentable organic fractions is necessary. In addition, the separated lignin is regarded as secondary process waste, which needs disposal. A number of technologies are currently available for this purpose. These include lignin combustion, pyrolysis, hydrocracking, or aerobic fermentation. Yet, the bio-waste lignin fraction has further potential that can be exploited by low energy consumption chemical technology. The valorisation of lignin in this fashion would contribute important economic and environmental improvements to current waste treatment practices. Taking an Italian municipal bio-waste treatment plant as empirical case study, the present chapter reviews work performed in the last decade for the valorisation of lignin originating from the organic humid fraction and gardening residues obtained from the separate source collection of municipal bio-wastes. The work covers also agriculture residues, although in a relatively very limited extent. The chapter reports processes and applications related to new speciality chemicals stemming for research developed at EU technology readiness level 5. The results prospect sustainable processes and products, and the possibility to realize a business model with reduced entrepreneurial risk for the conversion of a municipal bio-waste treatment plant to biorefinery producing fuel and bio-based chemicals. However, the chapter does not provide the reader with a strong methodology for evaluating the potential sustainability. In addition, the proposed business model with reduced entrepreneurial risk is at a very early stage. It relies mostly on assumptions that need validation. The results related to agriculture residues demonstrate that, although mainly focused on municipal bio-waste, the developed technology is applicable as well to other bio-waste types.


Muncipal bio-waste Bio-waste valorisation Bio-based specility chemicals Biosurfactants Biopolymers Biostimulants 


  1. Al Seadi T, Rutz D, Prassl H, Köttner M, Finsterwalder T, Volk S, Janssen R (2008) Biogas handbook. University of Southern Denmark Esbjerg (Niels Bohrs Vej 9-10, DK-6700 Esbjerg, Denmark, R). Accessed 7 Mar 2016
  2. Alibaba (2016b) Organic fertilizer market. Accessed 7 Mar 2016
  3. Alibaba (n.d.) EVOH—SOARNOL SG-654-NG. Accessed 6 Mar 2016
  4. Arato C, Kendal Pye E, Gjennestad G (2005) Appl Biochem Biotechnol 871:121–124Google Scholar
  5. Avetta P, Bella F, Bianco Prevot A, Laurenti E, Montoneri E, Arques A, Carlos L (2013) ACS Sustain Chem Eng 1:1545–1550Google Scholar
  6. Baglieria A, Cadilia V, Mozzetti Monterumici C, Gennari M, Tabasso S, Montoneri E, Nardi S, Negre M (2014) Sci Horticulturae 176:194–199Google Scholar
  7. Barilla Center for Food Nutrition (2012) Food wastes: causes, im-pacts and proposals, Accessed 7 Mar 2016
  8. Barth J (2010a) Bio-waste in the context of EU legislation. Accessed 7 Mar 2016Google Scholar
  9. Barth J (2010b) Markets for compost and digestate in Europe. Accessed 7 Mar 2016
  10. Bastioli C (2013) Bioplastics: an Italian case study of bioeconomy in Italy. Accessed 7 Mar 2016
  11. Baxter MD, Acosta E, Montoneri E, Tabasso S (2014) Ind Eng Chem Res 53:3612–3621CrossRefGoogle Scholar
  12. Biagini D, Gasco L, Rosato R, Peiretti PG, Gai F, Lazzaronia C, Montoneri C, Ginepro C (2016) Anim Feed Sci Technol. doi: 10.1016/j.anifeedsci.2016.02.005 Google Scholar
  13. Boffa V, Perrone DG, Magnacca G, Montoneri E (2014) Ceram Int 40:12161–12169CrossRefGoogle Scholar
  14. Brunow G, Lundquist K, Gellerstedt G (1998) In: Sjostro E, Alen R (eds) Analytical methods in wood chemistry, pulping and papermaking. Springer Science and Business Media, Berlin.,+Raimo+Alen,+1998&source=bl&ots=38EM_u6Nd_&sig=i74LLwJL2FKKarHUP-5FLQ_JHng&hl=it&sa=X&ei=sV-YVNjNOYbkUuiZgPAO&ved=0CCMQ6AEwAA. Accessed 7 Mar 2016
  15. Burke DA (2013) Economical recovery of ammonia from anaerobic digestate. In: Waste to worth, spreading science and solutions. Denver, CO. Accessed 7 Mar 2016)
  16. Burketova L, Trda L, Ott PG, Valentova O (2015) Biotechnol Adv 33:994–1004CrossRefGoogle Scholar
  17. Canilha L, Chandel AK, dos Santos Milessi TS, Antunes FAF, da Costa Freitas WL, das Gracas Almeida Felipe M, da Silva SS (2012) J Biomed Biotechnol, Article ID 989572. doi: 10.1155/2012/989572
  18. Centemero M, Ricci M, Giavini M, Dall’Anna D, Campagnol J, Longu G (2015) Annual report of the Italian composting and biogas association. Accessed 7 Mar 2016
  19. Clark J (2007) J Chem Technol Biotechnol 82:603–609CrossRefGoogle Scholar
  20. Clark J, Deswarte F, Farmer TJ, Mascal M (2014) In: Introduction to chemicals from biomass, 2nd ed. Copyright © 2015 Wiley, NJ. Published online: 26 Dec 2014. doi: 10.1002/9781118714478.ch4. Accessed 7 Mar 2016
  21. CP Manufacturing (2012) Solid waste management equipment. Accessed 3 Mar 2016
  22. David M, Joshi T, Negin D, Tan KY, Fagan JM (2010) Indus-trial biodegradable waste with primary focus on food waste.; Accessed 6 Mar 2016
  23. Deganello F, Tummino ML, Calabrese C, Testa ML, Avetta P, Fabbri D, Bianco Prevot A, Montoneri E, Magnacca G (2015) New J Chem 39:877–885CrossRefGoogle Scholar
  24. Department for environmental food and rural affairs (2013) Incineration of municipal solid wastes. Accessed 3 Mar 2016
  25. Diffen (2016) Chemical fertilizer vs. organic fertilizer. Accessed 7 Mar 2016
  26. Dinuccio E, Biagini D, Rosato R, Balsari P, Lazzaroni C, Montoneri E (2013) Adv Anim Biosci 4(Special Issue 2):515Google Scholar
  27. du Jardin P (2015) Sci Hortic 196:3–14CrossRefGoogle Scholar
  28. eBiochem (2016) Wholesale 2,1,3-benzothiadiazole, Accessed 7 Mar 2016
  29. European Bioplastics (2016) Bioplastics facts and figures. Accessed 7 Mar 2016Google Scholar
  30. European Commission (2013) Innovation, how to convert research into commercial success story? doi: 10.2777/10737. Accessed 7 Mar 2016
  31. European Commission (2014) Horizon 2020—Work programme 2014–2015, general annexes G, technology readiness lev-els (TRL), extract from part 19—Commission Decision C(2014)4995, Accessed 7 Mar 2016
  32. European Commission (2015) Environment, biodegradable waste. Accessed 3 Mar 2016
  33. European Commission (2016) REACH, Accessed 7 Mar 2016
  34. European Compost Network (2010) Country report of Germany. Accessed 7 Mar 2016
  35. European Environmental Agency (2013) Managing municipal solid wastes. EEA report. Accessed 7 Mar 2016Google Scholar
  36. Eurostat (2016) Farm structure statistics. Accessed 7 Mar 2016
  37. FAO (2008) The state of food and agriculture, Part I: biofuels: prospects, risks and opportunities. Accessed 7 Mar 2016
  38. FAO (2011) Global food losses and food waste—extent, causes and prevention, Rome. Accessed 3 Mar 2016
  39. FAO (2015) World fertilizer trends and outlook to 2018. Accessed 7 Mar 2016
  40. Fascella G, Montoneri E, Ginepro M, Francavilla M (2015) Sci Hortic 197:90–98CrossRefGoogle Scholar
  41. Fiedler H (1998) Sources and environmental impact of PCDD/PCDF. In: Proceedings of the subregional awareness raising workshop on persistent organic pollutants (pops), Kranjska Gora, Slovenia, 11–14 May 1998. Accessed 7 Mar 2016
  42. Foged H, Flotats Ripoll X, Bonmatí Blasi A, Palatsi Civit J, Magrí Aloy A, Schelde KM (2012) Inventory of manure processing activities in Europe. Accessed 7 Mar 2016
  43. Francavilla M, Beneduce L, Gatta G, Montoneri E, Monteleone M, Mainero D (2016a) Biochem Eng J 116:75–84CrossRefGoogle Scholar
  44. Francavilla M, Beneduce L, Gatta G, Montoneri E, Monteleone M, Mainero D (2016b) J Chem Technol Biotechnol 91:2679–2687CrossRefGoogle Scholar
  45. Franzoso F, Antonioli D, Montoneri E, Persico P, Tabasso S, Laus M, Mendichi R, Negre M, Vaca-Garcia C (2015a) J Appl Polym Sci 132(18):6006Google Scholar
  46. Franzoso F, Causone D, Tabasso S, Antonioli D, Montoneri E, Persico P, Laus M, Mendichi R, Negre M (2015b) J Appl Polym Sci 132(18):5803. doi: 10.1002/app.41909 Google Scholar
  47. Franzoso F, Tabasso S, Antonioli D, Montoneri E, Persico P, Laus M, Mendichi R, Negre M (2015c) J Appl Polym Sci 132(4):1301. doi: 10.1002/app.41359 CrossRefGoogle Scholar
  48. Franzoso F, Vaca-Garcia C, Rouilly A, Evon P, Montoneri E, Persico P, Mendichi R, Nisticò R, Francavilla M (2016) J Appl Polym Sci 133(9):2110. doi: 10.1002/APP.43009 CrossRefGoogle Scholar
  49. Fresco LO (2003) FAO spotlight/2003, fertilizer and the future. Accessed 7 Mar 2016
  50. Gomis J, Bianco Prevot A, Montoneri E, Gonzalez MC, Amat AM, Martire DO, Arques A, Carlos L (2014) Chem Eng J 235:236–243Google Scholar
  51. Green Facts (2015) Liquid biofuels for transport prospects, risks and opportunities. Accessed 7 Mar 2016
  52. Hu Z, Wen Z (2008) Biochem Eng 38:369–378CrossRefGoogle Scholar
  53. Huffington Post (2013) Food waste: Half of all food ends up thrown away, 10 Jan 2013. Accessed 6 Mar 2016
  54. Isagro SpA (2014) Efficacia biologica di Compost forniti dall’Università di Torino (Unpublished confidential report delivered to the author).
  55. Ispra (2012) Banche dati, environmental data yearbook. Accessed 7 Mar 2016
  56. Ji F, McGlone JJ, Kim SW (2006) J Anim Sci 84:2482–2490CrossRefGoogle Scholar
  57. Jindřichová B, Burketová L, Rosso D, Montoneri E (2016) (to be published)Google Scholar
  58. Kanellos M (2009) Bioplastics close in price to regular plastic and trader Joe’s coconut packages. Accessed 7 Mar 2016
  59. Kelly V, Crawford E (2007) Policies and actions to stimulate private sector fertilizer marketing in sub-Saharan Africa. Agricultural management, marketing and finance occasional paper 15. Accessed 7 Mar 2016
  60. Key to Metals AG (2014) Engineering stress-strain curve.
  61. Kolanu RT, Kumar S (2007) Greening agriculture in India an overview of opportunities and constraints. Accessed 7 Mar 2016
  62. Lerda D (2011) Polycyclic aromatic hydrocarbons (PAHs) fact sheet. Accessed 7 Mar 2016
  63. Liew NL (2011) Solid-state anaerobic digestion of lignocellulo-SiC biomass for biogas production. Master thesis, The Ohio State University.!etd.send_file?accession=osu1306870552&disposition=inline. Accessed 7 Mar 2016
  64. Lingle J (2008) Examination of the sources of polycyclic aromatic hydrocarbons (PAHs) in urban background soil.$File/EPRI-1015558-Sources+of+PAHs+in+Urban+Background+Soil-2008.pdf. Accessed 7 Mar 2016
  65. Luque T, Clark J (2013) Sustain Chem Process, pp 1–10Google Scholar
  66. Ma R, Xu Y, Zhang (2014), ChemSusChem 7:1–29Google Scholar
  67. Magnacca G, Laurenti E, Vigna E, Franzoso F, Tomasso L, Montoneri E, Boffa V (2012) Process Biochem 47:2025–2031CrossRefGoogle Scholar
  68. Marketsandmarkets (2015) Surfactants market by product …. trends and forecast to 2020. Accessed 12 Oct 2016
  69. Marketsandmarkets (n.d.) Biostimulants market … Global trends and forecasts to 2021.
  70. Martins O (1992) Bioresour Technol 42:103–111CrossRefGoogle Scholar
  71. Massa D, Prisa D, Montoneri E, Battaglini D, Ginepro M, Negre M, Burchi G (2016) Sci Hortic 205:59–69CrossRefGoogle Scholar
  72. McEntee K (2011) National compost prices. Accessed 11 Oct 2016
  73. Mirbagheri SA, Poshtegal MK, Parisai MS (2010) Desalination 256:70–76CrossRefGoogle Scholar
  74. Montoneri E (2012) Efficacy of an extract obtained from gardening trimmings in pigs diet, unpublished study commissioned by Università di Torino to Cerzoo. Piacenza, ItalyGoogle Scholar
  75. Montoneri E, Boffa V, Savarino P, Perrone DG, Montoneri C, Mendichi R, Acosta EJ, Kiran S (2010) Biomacromolecules 11:3036–3042CrossRefGoogle Scholar
  76. Montoneri E, Mainero D, Boffa V, Perrone DG, Montoneri C (2011) Int J Glob Environ Issues 11:170–196CrossRefGoogle Scholar
  77. Montoneri C, Montoneri E, Tomasso L, Piva A (2013) J Agriculture Sci 13:31–44Google Scholar
  78. Montoneri E, Tomasso L, Colajanni N, Zelano I, Alberi F, Cossa G, Barberis R (2014) Int J Environ Sci Technol 11(2):251–262CrossRefGoogle Scholar
  79. Montoneri E, Rosso D, Bucci G, Berto S, Baglieri A, Mendichi R, Quagliotto P, Francavilla M, Mainero D, Negre M (2016) Chem Select 1:1613–1629Google Scholar
  80. Morone PG, Tartiu VE, Falcone P (2015) J Clean Prod 90:43–54CrossRefGoogle Scholar
  81. Mostofa KMG, Yoshioka T, Abdul Mottalemb M, Vione D (2013) Photobiogeochemistry of organic matter. Springer, Berlin. Accessed 7 Mar 2016
  82. Mozzetti Monterumici C, Rosso D, Montoneri E, Ginepro M, Baglieri A, Novotny E, Kwapinski W, Negre M (2015) Int J Mol Sci 16:8826–8843Google Scholar
  83. Nasa (2015) Definition of technology readiness levels. Accessed 7 Mar 2016
  84. Natale G (2012) The world market for biostimulant in crop production. Accessed 4 Mar 2016
  85. New Ag International Journal (2012) Nov/Dec, Biostimulants: What’s behind the name? NewAgInternational_excerpt_Biostimulants-Whatsbehindthename.pdf. Accessed 4 Mar, 2016
  86. Niemel K, Alen R, Sjçstrçm E (1985) Holzforschung 39:167–172CrossRefGoogle Scholar
  87. Nisticò R, Evon P, Labonne L, Vaca-Medina G, Montoneri E, Francavilla M, Vaca-Garcia C, Magnacca G, Franzoso F, Negre M (2016) Chem Select 1:2354–2365Google Scholar
  88. Nova Institute (2015) Bio-based building blocks and polymers in the world. Accessed 7 Mar 2016
  89. Parsell T, Yohe S, Degenstein J, Jarrell T, Klein I, Gencer E, Hewetson B, Hurt M, Kim JI, Choudhari H, Saha B, Meilan R, Mosier N, Riberio F, Delgass WN, Chapple C, Kenttamaa HI, Agarwal R, Abu-Omar MM (2015) Green Chem 17:1492–1499CrossRefGoogle Scholar
  90. Plastermat (n.d.), Bioplastics to grow to 7% of total plastics market by 2020. Accessed 7 Mar 2016
  91. Plumer B (2012) How the U.S. manages to waste $165 billion in food each year. The Washington Post, 22 Aug. Accessed 7 Mar 2016
  92. Provolo G, Riva E (2009) Modelli gestionali per l’uso sostenibile degli effluenti di allevamento, GEA Quaderni della ricerca n. 104, Regione Lombardia,,0.pdf. Accessed 7 Mar 2016
  93. Quesada J, Rubio M, Gómez D (1999) J Wood Chem Technol 19:115–137CrossRefGoogle Scholar
  94. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RD, Gilna P, Keller M, Langan P, Naskar, Saddler JN, Tschaplinski TG, Tuskan GH, Wyman CE (2014) Science 344:1246843. doi: 10.1126/science.1246843
  95. Ricci-Jürgensen M (2012) Bio-waste management in Italy. Accessed 6 Mar 2016
  96. Riggio V, Rosso M, Comino E, Biagini D, Montoneri E (2016) J Chem Tech Biotechnol. doi: 10.1002/jctb.5106
  97. Roland-Holst D, Triolo R, Heft-Neal S, Bayrami B (2013) Bioplastics in California. Accessed 7 Mar 2016
  98. Rosso D, Fan J, Montoneri E, Negre M, Clark J, Mainero D (2015) Green Chem 17:3424–3435CrossRefGoogle Scholar
  99. Rovero A, Vitali M, Rosso D, Montoneri E, Chitarra W, Tabasso S, Ginepro M, Lovisolo C (2015) Int J Agronomy Agricultural Res (IJAAR) 6:75–91Google Scholar
  100. Sanders JPM, Clark JH, Harmsen GJ, Heeres HJ, Heijnen JJ, Kersten SRA, van Swaaij VPM, Moulijn JA (2012) Chem Eng Process 51:117–136CrossRefGoogle Scholar
  101. Savarino P, Montoneri E, Bottigliengo S, Boffa V, Guizzetti T, Perrone DG, Mendichi R (2009) Ind Eng Chem Res 48:3738–3749CrossRefGoogle Scholar
  102. Savarino P, Montoneri E, Musso G, Boffa V (2010) J Surfactants Detergents 13:59–68CrossRefGoogle Scholar
  103. Segre A, Gaiani S (2011) Transforming food waste into a re-source. RSC Books 2013, Royal Society of Chemistry Publishing, UK. Accessed 6 Mar 2016
  104. Segre A, Falasconi L, Morganti E (2009) Last minute market, increasing the economic, social and environmental value of unsold products in the food chain. Total food sustainability of the agrifood chain. RSC, London, pp 161–167Google Scholar
  105. Sereno CK (2010) Impact of ammonia and long chain fatty acids on thermophilic anaerobic digestion of swine wastes. PhD dissertation, North Carolina State University. Accessed 7 Mar 2016
  106. Sheldon-Coulson GA (2011) Production of levulinic acid in urban biorefineries. Master of Science thesis in technology and policy, Massachusetts Institute of Technology. Accessed 7 Mar 2016
  107. Sortino O, Dipasquale M, Montoneri E, Tomasso L, Avetta P, Bianco Prevot A (2013) Agron Sustain Dev 33(2):433–441Google Scholar
  108. Sortino O, Montoneri E, Patanè C, Rosato R, Tabasso S, Ginepro M (2014) Sci Total Environ 487C:443–451CrossRefGoogle Scholar
  109. Storz H, Vorlop KD (2013) Appl Agric For Res 4:321–332Google Scholar
  110. Tabasso S, Montoneri E, Carnaroglio D, Caporaso M, Cravotto G (2014) Green Chem 16:73–76. doi: 10.1039/C3GC41103F CrossRefGoogle Scholar
  111. Tang J (2012) A cost benefit analysis of waste incineration with advanced bottom ash separation technology for a Chinese municipality Guanghan. Master of science thesis, Vienna School of International affairs. Accessed 3 Mar 2016
  112. Testa ML, Tummino ML, Agostini S, Avetta P, Deganello F, Montoneri E, Magnacca G, Bianco Prevot A (2015) RSC Adv 5:47920–47927CrossRefGoogle Scholar
  113. The engineering toolbox (2013) Modulus of elasticity or Young’s modulus and tensile modulus for some common materials.; Accessed 10 Oct 2016
  114. Twardowska I, Janta Koszuta K, Miszcsak E, Stefaniak S (2010) Occurrence and binding strength of metals in composted bio-waste and sewage sludge. In: Pawlowski L, Dudzviska M, Pawlowski A (eds) Environmental engineering III. Taylor and Francis, London. Accessed 6 Mar 2016
  115. United States Department of Defense (2011) Technology readiness assessment (TRA) guidance. Accessed 7 Mar 2016
  116. US Environmental Protection Agency (2013) Global mitigation of non-CO2 greenhouse gases. Accessed 11 Oct 2016
  117. van Ree R, van Zeeland A (2014) Iea bioenergy task42, biorefining. Accessed 7 Mar 2016
  118. Vargas AKN, Savarino P, Montoneri E, Tabasso S, Cavalli R, Bianco Prevot A, Guardani R, Roux GAC (2014) Ind Eng Chem Res 53:8621–8629Google Scholar
  119. wiseGEEK (n.d.) Bending modulus. Accessed 7 Mar 2016
  120. Wrap (2016) Compost calculator. Accessed 7 Mar 2016
  121. Zarebska A, Romero Nieto D, Christensen KV, Fjerbæk Søtoft L, Norddahl B (2015) Crit Rev Environ Sci Technol 45:1469–1521Google Scholar
  122. Zhao Q, Leonhardt E, MacConnell C, Frear C, Chen S (2010) Purification Technologies for biogas generated by anaerobic digestion. CSANR research report 2010—001. Accessed 7 Mar 2016

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Bio-Waste ProcessingVeronaItaly

Personalised recommendations