Skip to main content

The Critical Raw Materials Concept: Subjective, Multifactorial and Ever-Developing

  • Chapter
  • First Online:
Factor X

Part of the book series: Eco-Efficiency in Industry and Science ((ECOE,volume 32))

Abstract

Criticality analysis has established itself as a multifactorial, action-oriented, socio-economic raw materials scarcity assessment method which is subject to continuous development. A raw material is critical when its supply is at risk and a company or economy is vulnerable to supply restrictions of that raw material. The binary labelling of raw materials as either critical or not delivers a strong message. However, each raw material has a characteristic risk profile which may not be described by an aggregated criticality score and a discrete treshold value. A differentiated interpretation allows for a deeper understanding of the raw material supply situation and for the adoption of appropriate measures. Criticality should be understood as a continuum, subjective to the raw material system in question. A harmonised criticality methodology presented in the industrial guideline on resource efficiency (VDI 4800-II) allows for a flexible application of the concept.

ÖkoRess, a research project of the German Environment Agency, examines why and how environmental aspects should be included into the criticality concept. A raw material is consequently environmentally critical if it exhibits a high overall environmental hazard potential and is at the same time of great importance for a company or economy. A high environmental hazard potential can indicate a future supply risk. The conclusions to be drawn, however, differ from the conclusions from conventional criticality analysis. Ecological criticality widens the focus to include measures used to foster responsible sourcing and mining practices, which until now have not been discussed in the context of criticality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angerer G et al. (2016) Rohstoffe für die Energieversorgung der Zukunft: Geologie – Märkte – Umwelteinflüsse. München

    Google Scholar 

  • Bardi U, Randers J (2014) Extracted: how the quest for mineral wealth is plundering the planet; a reportnto the Club of Rome/Ugo Bardi. VT Chelsea Green Publishing, White River Junction

    Google Scholar 

  • Birshan M, Decaix G, Ferreira N, Robinson H (2015) Is there hidden treasure in the mining industry? Low equity prices may offer important M&A opportunities for the mining industry. McKinsey & Company

    Google Scholar 

  • Buchert M, Schueler D, Bleher D (2009) Critical metals for future sustainable technologies and their recycling potential. UNEP/Öko-Institut e.V, Paris/Darmstadt

    Google Scholar 

  • Buchert M, Behrendt S, Degreif S, Bulach W, Schüler D (2017) SubSkrit: Substituting critical raw materials in environmental technologies (FKZ: 3714 93 316 0). Öko Institut e.V – Institute for applied ecology. IZT – Institut for Future Studies and Technology Assessment

    Google Scholar 

  • Buchholz P, Huy D, Liedtke M, Schmidt M (2014) DERA-Rohstoffliste 2014 – Angebotskonzentration bei mineralischen Rohstoffen und Zwischenprodukten – potenzielle Preis- und Lieferrisiken.. DERA Rohstoffinformationen. DERA – Deutsche Rohstoffagentur in der Bundesanstalt für Geowissenschaften und Rohstoffe, Berlin

    Google Scholar 

  • Buijs B, Sievers H, LAT E (2012) Limits to the critical raw materials approach. Proc ICE Waste Resour Manag 165:201–208

    Google Scholar 

  • Coulomb R, Dietz S, Godunova M, Nielsen TB (2015) Critical minerals today and in 2030. OECD Publishing, Paris. doi:10.1787/5jrtknwm5hr5-en

    Book  Google Scholar 

  • Dehoust G, Manhart A, Vogt R, Kämper C, Giegrich J, Priester M, Rechlin A (2017a) ÖkoRess: environmental limits, environmental availability and environmental criticality of primary raw materials (FKZ: 3713 93 302). Öko Institut – Institute for applied ecology; ifeu – Institute for Energy and Environmental Research; projekt-consult

    Google Scholar 

  • Dehoust G et al. (2017b) ÖkoRess II: further development of policy options for an ecological raw materials policy (FKZ: 3715 32 310 0). Öko Institut – Institute for applied ecology; ifeu – Institute for Energy and Environmental Research; projekt-consult; adelphi research

    Google Scholar 

  • DoE U (2010) Critical materials strategy. U.S. Department of Energy, Washington

    Google Scholar 

  • Erdmann L, Graedel TE (2011) Criticality of non-fuel minerals: a review of major approaches and analyses. Environ Sci Technol 45:7620–7630. doi:10.1021/es200563g

    Article  CAS  Google Scholar 

  • EU COM (2008) The raw materials initiative — meeting our critical needs for growth and jobs in Europe. Communication from the Commission to the Council and the European Parliament. COM (2008) 699 final, 4 November 2008. EU COM, Brussels

    Google Scholar 

  • EU COM (2010) Critical raw materials for the EU. European Commission, Brussels

    Google Scholar 

  • EU COM (2014) Report on critical raw materials for the EU. European Commission, Brussels

    Google Scholar 

  • Fairphone (2017) Fairer materials – a list of the 10 we’re focusing on Fairphone. https://www.fairphone.com/en/2017/01/26/fairer-materials-a-list-of-the-next-10-were-taking-on/. Accessed 6 march 2017

  • Faulstich M, Franke M, Mocker M, Kaufhold T, Kroop S (2014) Kritische Rohstoffe für Baden-Württemberg : Grundlagen und Empfehlungen im Rahmen der Landesstrategie Ressourceneffizienz. Umweltwirtschaftsforum: uwf; die betriebswirtschaftlich-ökologisch orientierte Fachzeitschrift 22:133–137

    Article  Google Scholar 

  • Gandenberger C, Glöser S, Marscheider-Weidemann F, Ostertag K, Walz R (2012) Die Versorgung der deutschen Wirtschaft mit Roh- und Werkstoffen für Hochtechnologien – Präzisierung und Weiterentwicklung der deutschen Rohstoffstrategie. TAB – Büro für Technikfolgen-Abschätzung beim Deutschen Bundestag, Berlin

    Google Scholar 

  • Giraud P-N (2012) A note on Hubbert’s thesis on mineral commodities production peaks and derived forecasting techniques. Procedia Eng 46:22–26. doi:10.1016/j.proeng.2012.09.441

    Article  Google Scholar 

  • Glöser S, Tercero Espinoza L, Gandenberger C, Faulstich M (2015) Raw material criticality in the context of classical risk assessment. Resour Policy 44:35–46. doi:10.1016/j.resourpol.2014.12.003

    Article  Google Scholar 

  • Graedel TE et al (2011) Methodology of metal criticality determination. Environ Sci Technol 46:1063–1070. doi:10.1021/es203534z

    Article  Google Scholar 

  • Graedel T, Gunn G, Espinoza LT (2014) 1. Metal resources, use and criticality. In: Critical metals handbook. Wiley, Chichester, pp 1–19

    Google Scholar 

  • Graedel TE, Harper EM, Nassar NT, Nuss P, Reck BK (2015) Criticality of metals and metalloids. Proc Natl Acad Sci 112:4257–4262. doi:10.1073/pnas.1500415112

    Article  CAS  Google Scholar 

  • Harper EM et al (2015) Criticality of the geological zinc, tin, and lead family. J Ind Ecol 19:628–644. doi:10.1111/jiec.12213

    Article  Google Scholar 

  • Helbig C, Wietschel L, Thorenz A, Tuma A (2016) How to evaluate raw material vulnerability – an overview. Resour Policy 48:13–24. doi:10.1016/j.resourpol.2016.02.003

    Article  Google Scholar 

  • Hubbert MK (1956) Nuclear energy and the fossil fuels. Paper presented at the drilling and production practice, New York, 1 January 1956

    Google Scholar 

  • ICMM (2012) Trends in the mining and metals industry. International Council on Mining and Metals (ICMM), London

    Google Scholar 

  • International Institute for Industrial Environmental Economics (IEEE) (2016) Circle of light. The impact of the LED lifecycle. Lund University, Lund

    Google Scholar 

  • ISO (2006) ISO 14040:2006 environmental management – life cycle assessment – principles and framework vol ISO 14040:2006. DIN Deutsches Institut für Normung e.V, Berlin

    Google Scholar 

  • ISO (2009) ISO 31000:2009 risk management – principles and guidelines vol ISO 31000:2009. DIN Deutsches Institut für Normung e.V, Berlin

    Google Scholar 

  • Jevons WS (1865) The coal question: an enquiry concerning the progress of the Nation, and the probable exhaustion of our coal-mines. Macmillan, London

    Google Scholar 

  • Kaufman D, Kray A, Mastruzzi M (2010) The worldwide governance Indicators: methodology and analytical issues. Draft policy research working paper. Brookings Institution/World Bank

    Google Scholar 

  • Marscheider-Weidemann F, Langkau S, Hummen T, Erdmann L, Espinoza LT, Angerer G (2016) Rohstoffe für Zukunftstechnologien 2016 – Raw materials for emerging technologies 2016. German Mineral Resources Agency DERA at the Federal Institute for Geosciences and Natural Resources BGR, Berlin

    Google Scholar 

  • Mauss R, Posch PN (2014) Marktpreisrisiken rohstoffintensiver Unternehmen – Identifikation und Management. In: Kausch P (ed) Strategische Rohstoffe – Risikovorsorge. Springer, Berlin, p 39

    Chapter  Google Scholar 

  • May D, Prior T, Cordell D, Giurco D (2012) Peak minerals: theoretical foundations and practical application. Nat Resour Res 21:43–60. doi:10.1007/s11053-011-9163-z

    Article  Google Scholar 

  • Meadows D, Meadows D (1972) The limits to growth. Earth Island Ltd., London

    Google Scholar 

  • Morley N, Eatherley D (2008) Material security: ensuring resource availability for the UK economy. C-Tech Innovation Limited, Chester

    Google Scholar 

  • Moss R, Tzimas E, Kara H, Willis P, Kooroshy J (2011) Critical metals in strategic energy technologies. JRC-scientific and strategic reports, European Commission Joint Research Centre Institute for Energy and Transport, Luxembourg

    Google Scholar 

  • Nassar NT et al (2011) Criticality of the geological copper family. Environ Sci Technol 46:1071–1078. doi:10.1021/es203535w

    Article  Google Scholar 

  • Nassar N, Graedel T, Harper E (2015a) By-product metals are technologically essential but have problematic supply. Sci Adv 1:1–10

    Article  Google Scholar 

  • Nassar NT, Du X, Graedel TE (2015b) Criticality of the rare earth elements. J Ind Ecol:1–11. doi:10.1111/jiec.12237

    Google Scholar 

  • NRC (2008) Minerals, critical minerals, and the US economy. National Academies Press, Washington, DC

    Google Scholar 

  • Paley W, Brown G, Bunker A, Hodgins E, Mason E (1952) Resources for freedom: a report to the President. Vol Bd. 1–5. U.S. Government Printing Office, Washington DC

    Google Scholar 

  • Pfeifer S, Franke M, Mocker M, Faulstich M (2012) Resource strategies for Hesse with special consideration on secondary raw materials. Wasser und Abfall 14:10–14. doi:10.1365/s35152-012-0152-2

    Article  Google Scholar 

  • Pfleger P, Lichtblau K, Bardt H, Reller A (2009) Rohstoffsituation Bayern: Keine Zukunft ohne Rohstoffe. VBW (Vereinigung der Bayerischen Wirtschaft), München

    Google Scholar 

  • Reller A (2011) Criticality of metal resources for functional materials used in electronics and microelectronics. Phys Status Solidi (RRL) – Rapid Res Lett 5:309–311. doi:10.1002/pssr.201105126

    Article  CAS  Google Scholar 

  • Rockström J et al (2009) A safe operating space for humanity. Nature 461:472–475

    Article  Google Scholar 

  • Rustad JR (2012) Peak nothing: recent trends in mineral resource production. Environ Sci Technol 46:1903–1906. doi:10.1021/es203065g

    Article  CAS  Google Scholar 

  • Schandl H et al (2016) Global material flows and resource productivity. An assessment study of the UNEP international resource panel. United Nations Environment Programme, Paris

    Google Scholar 

  • Schmitz S, Paulini I (1999) Valuation as an element of life cycle assessments - German Federal Environmental Agency method for impact indicator standardization, impact category grouping (ranking), and interpretation in accordance with ISO 14042 and 14043. Federal Environment Agency, Berlin.

    Google Scholar 

  • Steffen W et al (2015) Planetary boundaries: guiding human development on a changing planet. Science 347. doi:10.1126/science.1259855

    Google Scholar 

  • Sverdrup HU, Ragnarsdottir KV, Koca D (2017) An assessment of metal supply sustainability as an input to policy: security of supply extraction rates, stocks-in-use, recycling, and risk of scarcity. J Clean Prod 140:359–372. doi:10.1016/j.jclepro.2015.06.085

    Article  CAS  Google Scholar 

  • Tercero Espinoza L et al (2013) Critical raw materials substitution profiles. CRM InnoNet Substitution of Critical Raw Materials, Brussels

    Google Scholar 

  • The Federal Government (2002) Perspectives for Germany: our strategy for sustainable development; abridged version. The Federal Government, Berlin

    Google Scholar 

  • The Guardian (2015) China scraps quotas on rare earths after WTO complaint. Guardian News and Media Limited. https://www.theguardian.com/world/2015/jan/05/china-scraps-quotas-rare-earth-wto-complaint. Accessed 5 March 2017

  • UBA (2010) Statement of the German Environment Agency (UBA) on the “critical raw materials for the EU”. German Environment Agency (UBA), Dessau-Rosslau

    Google Scholar 

  • USGS (2016) Mineral commodity summaries 2016. U.S. Geological Survey, Reston. http://dx.doi.org/10.3133/70140094

    Google Scholar 

  • VDI (2016) VDI 4800 Blatt 2 (Draft): Ressourceneffizienz – Bewertung des Rohstoffaufwands. Association of german engineers (VDI)

    Google Scholar 

  • Walz R, Bodenheimer M, Gandenberger C (2016) Kritikalität und Positionalität: Was ist kritisch für wen – und weshalb? In: Exner A, Held M, Kümmerer K (eds) Kritische Metalle in der Großen Transformation. Springer, Berlin/Heidelberg. doi:10.1007/978-3-662-44839-7

    Google Scholar 

  • Wellmer FW (2008) Reserves and resources of the geosphere, terms so often misunderstood. Is the life index of reserves of natural resources a guide to the future? Z dt Ges Geowiss 159:575–590

    Google Scholar 

  • Wellmer FW (2012) Was sind wirtschaftsstrategische Rohstoffe? In: Thomé-Kozmiensky KJ, Goldmann D (eds) Recycling und Rohstoffe, Band 5, vol 5. TK-Verlag, Neuruppin, pp 525–535

    Google Scholar 

  • Zepf V, Simmons J, Reller A, Ashfield M, Rennie C (2014) Materials critical to the energy industry – an introduction. BP p.l.c, London

    Google Scholar 

Download references

Disclaimer

This paper does not necessarily reflect the opinion or the policies of the German Federal Environment Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kosmol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Kosmol, J., Müller, F., Keßler, H. (2018). The Critical Raw Materials Concept: Subjective, Multifactorial and Ever-Developing. In: Lehmann, H. (eds) Factor X. Eco-Efficiency in Industry and Science, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-50079-9_5

Download citation

Publish with us

Policies and ethics