Advertisement

Introduction to Visual Attributes

  • Rogerio Schmidt Feris
  • Christoph Lampert
  • Devi Parikh
Chapter
Part of the Advances in Computer Vision and Pattern Recognition book series (ACVPR)

Abstract

This chapter serves as an introduction to the content of the book.

Keywords

Convolutional Neural Network Visual Attribute Image Search Privileged Information Multitask Learning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Akata, Z., Malinowski, M., Fritz, M., Schiele, B.: Multi-cue zero-shot learning with strong supervision. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)Google Scholar
  2. 2.
    Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C.: Label embeddings for image classification. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 38(7), 1425–1438 (2016)CrossRefGoogle Scholar
  3. 3.
    Biederman, I.: Recognition by components—a theory of human image understanding. Psychol. Rev. 94(2), 115–147 (1987)CrossRefGoogle Scholar
  4. 4.
    Branson, S., Wah, C., Schroff, F., Babenko, B., Welinder, P., Perona, P., Belongie, S.: Visual recognition with humans in the loop. In: European Conference on Computer Vision (ECCV) (2010)Google Scholar
  5. 5.
    Christie, G., Parkash, A., Krothapalli, U., Parikh, D.: Predicting user annoyance using visual attributes. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2014)Google Scholar
  6. 6.
    Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures in the wild. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2014)Google Scholar
  7. 7.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2009)Google Scholar
  8. 8.
    Deza, A., Parikh, D.: Understanding image virality. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2015)Google Scholar
  9. 9.
    Dhar, S., Ordonez, V., Berg, T.: High level describable attributes for predicting aesthetics and interestingness. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2011)Google Scholar
  10. 10.
    Donahue, J., Grauman, K.: Image recognition with annotator rationales. In: International Conference on Computer Vision (ICCV) (2011)Google Scholar
  11. 11.
    Douze, M., Ramisa, A., Schmid, C.: Combining attributes and fisher vectors for efficient image retrieval. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2011)Google Scholar
  12. 12.
    Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.A.: Describing objects by their attributes. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2009)Google Scholar
  13. 13.
    Feris, R.S., Bobbit, R., Brown, L., Pankanti, S.: Attribute-based people search: lessons learnt from a practical surveillance system. In: International Conference on Multimedia Retrieval (ICMR) (2014)Google Scholar
  14. 14.
    Gan, C., Yang, T., Gong, B.: Learning attributes equals multi-source domain generalization. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)Google Scholar
  15. 15.
    He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: International Conference on Computer Vision (ICCV) (2015)Google Scholar
  16. 16.
    Hendricks, L., Akata, Z., Rohrbach, M., Donahue, J., Schiele, B., Darrell, T.: Generating visual explanations. In: European Conference on Computer Vision (ECCV) (2016)Google Scholar
  17. 17.
    Huang, J., Feris, R.S., Chen, Q., Yan, S.: Cross-domain image retrieval with a dual attribute-aware ranking network. In: International Conference on Computer Vision (ICCV) (2015)Google Scholar
  18. 18.
    Isola, P., Xiao, J., Parikh, D., Torralba, A., Oliva, A.: What makes a photograph memorable? IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 36(7), 1469–1482 (2014)CrossRefGoogle Scholar
  19. 19.
    Kong, S., Shen, X., Lin, Z., Mech, R., Fowlkes, C.: Photo aesthetics ranking network with attributes and content adaptation. In: European Conference on Computer Vision (ECCV) (2016)Google Scholar
  20. 20.
    Kovashka, A., Parikh, D., Grauman, K.: Whittlesearch: interactive image search with relative attribute feedback. Int. J. Comput. Vis. (IJCV) 115, 185–210 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kovashka, A., Vijayanarasimhan, S., Grauman, K.: Actively selecting annotations among objects and attributes. In: International Conference on Computer Vision (ICCV) (2011)Google Scholar
  22. 22.
    Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Conference on Neural Information Processing Systems (NIPS) (2012)Google Scholar
  23. 23.
    Kumar, N., Belhumeur, P.N., Nayar, S.K.: FaceTracer: A search engine for large collections of images with faces. In: European Conference on Computer Vision (ECCV) (2008)Google Scholar
  24. 24.
    Laffont, P.Y., Ren, Z., Tao, X., Qian, C., Hays, J.: Transient attributes for high-level understanding and editing of outdoor scenes. In: ACM SIGGRAPH (2014)Google Scholar
  25. 25.
    Lampert, C., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2009)Google Scholar
  26. 26.
    Lampert, C., Nickisch, H., Harmeling, S.: Attribute-based classification for zero-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 36(3), 453–465 (2013)CrossRefGoogle Scholar
  27. 27.
    Layne, R., T., H., Gong, S.: Re-id: Hunting attributes in the wild. In: British Machine Vision Conference (BMVC) (2014)Google Scholar
  28. 28.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  29. 29.
    Liu, L., Xu, H., Xing, J., Liu, S., Zhou, X., Yan, S.: Wow! you are so beautiful today! In: International Conference on Multimedia (ACM MM) (2013)Google Scholar
  30. 30.
    Palatucci, M., Hinton, G., Pomerleau, D., Mitchell, T.M.: Zero-shot learning with semantic output codes. In: Conference on Neural Information Processing Systems (NIPS) (2009)Google Scholar
  31. 31.
    Parikh, D., Grauman, K.: Relative attributes. In: International Conference on Computer Vision (ICCV) (2011)Google Scholar
  32. 32.
    Patterson, G., Hays, J.: Sun attribute database: discovering, annotating, and recognizing scene attributes. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)Google Scholar
  33. 33.
    Qiao, R., Liu, L., Shen, C., van den Hengel, A.: Less is more: zero-shot learning from online textual documents with noise suppression. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)Google Scholar
  34. 34.
    Rohrbach, M., Stark, M., Szarvas, G., Gurevych, I., Schiele, B.: What helps where and why? Semantic relatedness for knowledge transfer. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2010)Google Scholar
  35. 35.
    Schein, A., Popescul, A., Ungar, L., Pennock, D.: Methods and metrics for cold-start recommendations. In: International Conference on Research and Development in Information Retrieval (ACM SIGIR) (2002)Google Scholar
  36. 36.
    Sharmanska, V., Quadrianto, N., Lampert, C.: Learning to rank using privileged information. In: International Conference on Computer Vision (ICCV) (2013)Google Scholar
  37. 37.
    Shi, Z., Hospedales, T., Xiang, T.: Transferring a semantic representation for person re-identification and search. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2015)Google Scholar
  38. 38.
    Siddiquie, B., Feris, R.S., Davis, L.: Image ranking and retrieval based on multi-attribute queries. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2011)Google Scholar
  39. 39.
    Su, C., Zhang, S., Xing, J., Gao, W., Tian, Q.: Deep attributes driven multi-camera person re-identification. In: European Conference on Computer Vision (ECCV) (2016)Google Scholar
  40. 40.
    Vaquero, D., Feris, R.S., Brown, L., Hampapur, A.: Attribute-based people search in surveillance environments. In: Winter Conference on Applications of Computer Vision (WACV) (2009)Google Scholar
  41. 41.
    Yan, X., Yang, J., Sohn, K., Le, H.: Attribute2image: Conditional image generation from visual attributes. In: European Conference on Computer Vision (ECCV) (2016)Google Scholar
  42. 42.
    Yang, S., Luo, P., Loy, C., Tang, X.: From facial part responses to face detection: a deep learning approach. In: International Conference on Computer Vision (ICCV) (2015)Google Scholar
  43. 43.
    Zhang, Z., Luo, P., Loy, C., Tang, X.: Learning deep representation for face alignment with auxiliary attributes. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 38(5), 918–930 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Rogerio Schmidt Feris
    • 1
  • Christoph Lampert
    • 2
  • Devi Parikh
    • 3
  1. 1.IBM T. J. Watson Research CenterNew YorkUSA
  2. 2.Institute of Science and Technology AustriaKlosterneuburgAustria
  3. 3.Georgia TechAtlantaUSA

Personalised recommendations