Skip to main content

On the Reals Which Cannot Be Random

  • Chapter
  • First Online:
Book cover Computability and Complexity

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10010))

Abstract

We investigate which reals can never be L-random. That is to give a description of the reals which are always belong to some \(L[\lambda ]\)-null set for any continuous measure \(\lambda \). Among other things, we prove that \(NCR_L\) is an L-cofinal subset of \(Q_3\) under \(ZFC+PD\).

Yu was partially supported by National Natural Science Fund of China grant 11322112 and Humboldt foundation. Both authors thank Professor Ambos-Spies from Heidelberg University and Professor Schindler from University of Münster for their hospitality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The function j was introduced in [14]. We use \(\kappa \) to denote \(\aleph _1\) in V to avoid any confusion.

  2. 2.

    This is slightly different from [20, Definition 6.11]. In our situation, b needs not be wellfounded.

  3. 3.

    i.e. \(E_{\alpha }^{\mathcal {T}}\) might be empty, in which case we do nothing and put \(\mathcal {M}_{\alpha +1}^{\mathcal {T}} = \mathcal {M}_{\alpha }^{\mathcal {T}}\), and similarly for \(\mathcal {U}\).

References

  1. Bartoszyński, T., Judah, H.: Set Theory: On the Structure of the Real Line. A K Peters Ltd., Wellesley, MA (1995)

    Google Scholar 

  2. Chong, C.T., Liang, Y.: Recursion Theory: Computational Aspects of Definability. De Gruyter Series in Logic and Its Applications, vol. 8. De Gruyter, Berlin (2015). With an interview with Gerald E, Sacks

    Google Scholar 

  3. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. Theory and Applications of Computability. Springer, New York (2010)

    Google Scholar 

  4. Friedman, S.D.: Fine Structure and Class Forcing. De Gruyter Series in Logic and Its Applications. De Gruyter (2000)

    Google Scholar 

  5. Jech, T.: Set Theory. Springer Monographs in Mathematics. Springer, Berlin (2003)

    Google Scholar 

  6. Jensen, R., Steel, J.: \(K\) without the measurable. J. Symbolic Logic 78(3), 708–734 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kechris, A.S.: The theory of countable analytical sets. Trans. Amer. Math. Soc. 202, 259–297 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kechris, A.S., Martin, D.A., Solovay, R.M.: Introduction to \(Q\)-theory. In: Kechris, A.S., Martin, D.A., Moschovakis, Y.N. (eds.) Cabal Seminar 79–81. Lecture Notes in Mathematics, vol. 1019, pp. 199–282. Springer, Berlin (1983)

    Chapter  Google Scholar 

  9. Kučera, A., Nies, A., Porter, C.P.: Demuth’s path to randomness. Bull. Symb. Log. 21(3), 270–305 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Moschovakis, Y.N.: Descriptive Set Theory. Mathematical Surveys and Monographs, vol. 155, 2nd edn. American Mathematical Society, Providence, RI (2009)

    Google Scholar 

  11. Reimann, J., Slaman, T.A.: Measures and their random reals. Trans. Amer. Math. Soc. 367(7), 5081–5097 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Reimann, J., Slaman, T.A.: Randomness for continuous measures (2016)

    Google Scholar 

  13. Schimmerling, E., Steel, J.R.: The maximality of the core model. Trans. Amer. Math. Soc. 351(8), 3119–3141 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Simpson, S.G.: Minimal covers and hyperdegrees. Trans. Amer. Math. Soc. 209, 45–64 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  16. Solovay, R.M.: A model of set-theory in which every set of reals is Lebesgue measurable. Ann. of Math. (2) 92, 1–56 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  17. Steel, J.R.: Inner models with many Woodin cardinals. Ann. Pure Appl. Logic 65(2), 185–209 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Steel, J.R.: Projectively well-ordered inner models. Ann. Pure Appl. Logic 74(1), 77–104 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Steel, J.R.: The Core Model Iterability Problem. Lecture Notes in Logic, vol. 8. Springer, Berlin (1996)

    Google Scholar 

  20. Steel, J.R.: An outline of inner model theory. In: Handbook of Set Theory. vols. 1, 2, 3, pp. 1595–1684. Springer, Dordrecht (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yu, L., Zhu, Y. (2017). On the Reals Which Cannot Be Random. In: Day, A., Fellows, M., Greenberg, N., Khoussainov, B., Melnikov, A., Rosamond, F. (eds) Computability and Complexity. Lecture Notes in Computer Science(), vol 10010. Springer, Cham. https://doi.org/10.1007/978-3-319-50062-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50062-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50061-4

  • Online ISBN: 978-3-319-50062-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics