Skip to main content

A Systematic Approach to Fault Attack Resistant Design

  • Chapter
  • First Online:
Fundamentals of IP and SoC Security

Abstract

Fault injection is a powerful hacking tool, affecting all forms of cryptography. In this chapter, we describe common fault injection mechanisms, and common fault analysis techniques. From these observations, we derive a set of guidelines and techniques for fault attack resistant design. The main objective of this contribution is to describe fault attack resistant design and differentiate it from fault tolerant design, a set of techniques based on redundancy. The key differentiator between the two types of design can be made by considering the cause of the fault. Fault tolerant design deals with random, arbitrary events and generic failures of a design. In contrast, fault attack resistant design deals with an intelligent adversary who has a focused objective to break the security of a design. The fault tolerant methods basically require the system to be able to continue performing its functions correctly in presence of faults. On the other hand, a fault attack resistant design requires the system to continue performing its intended operation without leaking secret data-dependent information in presence of faults. While fault tolerant design techniques can be used to create a fault attack resistant design, in this chapter, will show that by analyzing the fault attack requirements, the nature of the threat enables significant optimizations, which improve cost and performance of the protected designs. We review several fault-resistant design techniques that are generic and broadly applicable to secure intellectual property (IP) modules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agoyan, M., Dutertre, J.M., Naccache, D., Robisson, B., Tria, A.: When Clocks Fail: On Critical Paths and Clock Faults. In: Smart Card Research and Advanced Application, pp. 182–193. Springer (2010)

    Google Scholar 

  2. Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box characterization of the effects of Clock Glitches on 8-bit MCUs. In: 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 105–114 (2011)

    Google Scholar 

  3. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s Apprentice guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006). Feb

    Article  Google Scholar 

  4. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on cryptographic devices: theory, practice, and countermeasures. Proc. IEEE 100(11), 3056–3076 (2012). Nov

    Article  Google Scholar 

  5. Barenghi, A., Bertoni, G.M., Breveglieri, L., Pelliccioli, M., Pelosi, G.: Injection technologies for fault attacks on microprocessors. In: Joye, M., Tunstall, M. (eds.) Fault Analysis in Cryptography. Information Security and Cryptography, pp. 275–293. Springer, Berlin (2012)

    Chapter  Google Scholar 

  6. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Advances in CryptologyCRYPTO’97, pp. 513–525. Springer (1997)

    Google Scholar 

  7. Blömer, J., Seifert, J.P.: Fault based cryptanalysis of the advanced encryption standard (AES). In: Financial Cryptography, pp. 162–181. Springer (2003)

    Google Scholar 

  8. Bo, Y., Xiangyu, L., Cong, C., Yihe, S., Liji, W., Xiangmin, Z.: An AES chip with DPA resistance using hardware-based random order execution. J. Semicond. 33(6), 065009 (2012)

    Article  Google Scholar 

  9. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors in cryptographic computations. J. Cryptol. 14(2), 101–119 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Danger, J.L., Guilley, S., Bhasin, S., Nassar, M.: Overview of dual rail with Precharge logic styles to thwart implementation-level attacks on hardware cryptoprocessors. In: 2009 3rd International Conference on Signals, Circuits and Systems (SCS), pp. 1–8. IEEE (2009)

    Google Scholar 

  11. Dehbaoui, A., Dutertre, J.M., Robisson, B., Orsatelli, P., Maurine, P., Tria, A.: Injection of transient faults using electromagnetic pulses-practical results on a cryptographic system. IACR Cryptol. ePrint Arch. 2012, 123 (2012)

    Google Scholar 

  12. Ghalaty, N.F., Aysu, A., Schaumont, P.: Analyzing and eliminating the causes of fault sensitivity analysis. In: Proceedings of the Conference on Design, Automation & Test in Europe. p. 204. European Design and Automation Association (2014)

    Google Scholar 

  13. Ghalaty, N.F., Yuce, B., Taha, M., Schaumont, P.: Differential Fault Intensity Analysis. In: 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 49–58. IEEE (2014)

    Google Scholar 

  14. Guilley, S., Sauvage, L., Danger, J.L., Selmane, N.: Fault injection resilience. In: 2010 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 51–65. IEEE (2010)

    Google Scholar 

  15. Guo, X., Mukhopadhyay, D., Karri, R.: Provably secure concurrent error detection against differential fault analysis. IACR Cryptol. ePrint Arch. 2012, 552 (2012)

    Google Scholar 

  16. Joye, M., Tunstall, M. (eds.): Fault Analysis in Cryptography. Information Security and Cryptography. Springer, Berlin (2012)

    Google Scholar 

  17. Karaklajic, D., Fan, J., Verbauwhede, I.: A systematic M safe-error Detection in hardware implementations of cryptographic algorithms. In: 2012 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 96–101 (2012)

    Google Scholar 

  18. Karri, R., Wu, K., Mishra, P., Kim, Y.: Concurrent error detection schemes for fault-based side-channel cryptanalysis of symmetric block ciphers. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst 21(12), 1509–1517 (2002)

    Article  Google Scholar 

  19. Kocher, P., Jaffe, J., Jun, B., Rohatgi, P.: J. Cryptogr. Eng. 1(1), 5–27 (2011)

    Google Scholar 

  20. Kömmerling, O., Kuhn, M.G.: Design principles for tamper-resistant Smartcard processors. In: USENIX Workshop on Smartcard Technology, vol. 12, pp. 9–20 (1999)

    Google Scholar 

  21. Kunitake, Y., Sato, T., Yasuura, H., Hayashida, T.: Possibilities to miss predicting timing errors in canary flip-flops. In: 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1–4. IEEE (2011)

    Google Scholar 

  22. Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., Ohta, K.: Fault sensitivity analysis. In: Cryptographic Hardware and Embedded Systems, CHES 2010, pp. 320–334. Springer (2010)

    Google Scholar 

  23. Lomné, V., Roche, T., Thillard, A.: On the need of randomness in fault attack countermeasures-application to AES. In: 2012 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 85–94. IEEE (2012)

    Google Scholar 

  24. Luo, P., Fei, Y.: Faulty clock detection for crypto circuits against differential fault analysis attack. Cryptol. ePrint Arch. Report 2014/883. http://eprint.iacr.org/ (2014)

  25. Markantonakis, K., Mayes, K.: Secure Smart Embedded Devices. Platforms and Applications. Springer, Berlin (2013)

    Google Scholar 

  26. Mitra, S., McCluskey, E.J.: Which concurrent error detection scheme to choose? In: Test Conference, 2000. Proceedings. International, pp. 985–994. IEEE (2000)

    Google Scholar 

  27. Moradi, A., Shalmani, M.T.M., Salmasizadeh, M.: A generalized method of differential fault attack against AES cryptosystem. In: Cryptographic Hardware and Embedded Systems-CHES 2006, pp. 91–100. Springer (2006)

    Google Scholar 

  28. Piret, G., Quisquater, J.J.: A differential fault attack technique against SPN structures, with application to the AES and KHAZAD. In: Cryptographic Hardware and Embedded Systems-CHES 2003, pp. 77–88. Springer (2003)

    Google Scholar 

  29. Quisquater, J.J., Samyde, D.: Electromagnetic analysis (EMA): measures and counter-measures for Smart Cards. In: Smart Card Programming and Security, pp. 200–210. Springer (2001)

    Google Scholar 

  30. Quisquater, J., Samyde, D.: Eddy current for magnetic analysis with active sensor. In: Esmart (2002)

    Google Scholar 

  31. Sato, T., Kunitake, Y.: A simple flip-flop circuit for typical-case designs for DFM. In: 8th International Symposium on Quality Electronic Design, 2007. ISQED’07, pp. 539–544. IEEE (2007)

    Google Scholar 

  32. Selmane, N., Guilley, S., Danger, J.L.: Practical setup time violation attacks on AES. In: Seventh European Dependable Computing Conference, 2008. EDCC 2008, pp. 91–96. IEEE (2008)

    Google Scholar 

  33. Skorobogatov, S., Woods, C.: Breakthrough silicon scanning discovers backdoor in military chip. In: CHES, pp. 23–40 (2012)

    Google Scholar 

  34. Skorobogatov, S.P.: Semi-invasive attacks—A new approach to hardware security analysis. Technical report. UCAM-CL-TR-630, University of Cambridge, Computer Laboratory (2005)

    Google Scholar 

  35. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Cryptographic Hardware and Embedded Systems-CHES 2002, pp. 2–12. Springer (2003)

    Google Scholar 

  36. Takahashi, J., Fukunaga, T., Gomisawa, S., Li, Y., Sakiyama, K., Ohta, K.: Fault injection and key retrieval experiments on an evaluation board. In: Joye, M., Tunstall, M. (eds.) Fault Analysis in Cryptography, pp. 313–331. Information Security and Cryptography, Springer, Berlin (2012)

    Google Scholar 

  37. Tupsamudre, H., Bisht, S., Mukhopadhyay, D.: Destroying fault invariant with randomization. In: Cryptographic Hardware and Embedded Systems–CHES 2014, pp. 93–111. Springer (2014)

    Google Scholar 

  38. Wang, L.T., Wu, C.W., Wen, X.: VLSI Test Principles and Architectures: Design for Testability. Academic Press (2006)

    Google Scholar 

  39. van Woudenberg, J., Witteman, M., Menarini, F.: Practical optical fault injection on secure microcontrollers. In: 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 91–99 (2011)

    Google Scholar 

  40. Yanci, A.G., Pickles, S., Arslan, T.: Characterization of a voltage Glitch attack detector for secure devices. In: Symposium on Bio-inspired Learning and Intelligent Systems for Security, 2009. BLISS’09, pp. 91–96. IEEE (2009)

    Google Scholar 

  41. Yuce, B., Ghalaty, N.F., Schaumont, P.: TVVF: Estimating the vulnerability of hardware cryptosystems against timing violation attacks. In: 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 72–77. IEEE (2015)

    Google Scholar 

Download references

Acknowledgements

This research was supported through the National Science Foundation Grant 1441710, and through the Semiconductor Research Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahid Farhady Galathy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Galathy, N.F., Yuce, B., Schaumont, P. (2017). A Systematic Approach to Fault Attack Resistant Design. In: Bhunia, S., Ray, S., Sur-Kolay, S. (eds) Fundamentals of IP and SoC Security. Springer, Cham. https://doi.org/10.1007/978-3-319-50057-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50057-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50055-3

  • Online ISBN: 978-3-319-50057-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics