Skip to main content

The Roles of SUMO in Metabolic Regulation

  • Chapter
  • First Online:
SUMO Regulation of Cellular Processes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 963))

Abstract

Protein modification with the small ubiquitin-related modifier (SUMO) can affect protein function, enzyme activity, protein-protein interactions, protein stability, protein targeting and cellular localization. SUMO influences the function and regulation of metabolic enzymes within pathways, and in some cases targets entire metabolic pathways by affecting the activity of transcription factors or by facilitating the translocation of entire metabolic pathways to subcellular compartments. SUMO modification is also a key component of nutrient- and metabolic-sensing mechanisms that regulate cellular metabolism. In addition to its established roles in maintaining metabolic homeostasis, there is increasing evidence that SUMO is a key factor in facilitating cellular stress responses through the regulation and/or adaptation of the most fundamental metabolic processes, including energy and nucleotide metabolism. This review focuses on the role of SUMO in cellular metabolism and metabolic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

SUMO:

Small Ubiquitin-related Modifier

SIM:

SUMO interacting motif

SREBPs:

sterol regulatory element binding proteins

bHLH-Zip:

basic helix-loop-helix leucine zipper

SRE:

sterol response element

SCAP:

SREBP cleavage activating protein

INSIG:

insulin inducing gene

MAPKs:

mitogen-activated protein kinases

HDAC3:

histone deacetylase 3

ROS :

reactive oxygen species

SENPs:

sentrin specific proteases

PPARs:

peroxisome proliferators-activated receptors

KLF5:

Krüppel like transcription factor 5

Cpt1b:

carnitine palmitoyl transferase

Ucp2:

uncoupling proteins

ICA512:

islet cell autoantigen 512

STAT5:

signal transducer and activator of transcription

GLUTs:

glucose transporters

DRP1:

dynamin related protein 1

FIS1:

fission protein 1

AICARTfase:

aminoimidazole-4-carboxamide ribonucleotide transferase

DHFR:

dihydrofolate reductase

GARTfase:

10-formyltetrahydrofolate:5′-phosphoribosylglycinamide N-formyltransferase

MTHFD1:

methylenetetrahydrofolate dehydrogenase 1

NADPH:

nicotinamide adenine dinucleotide phosphate

SHMT1:

cytoplasmic serine hydroxymethyltransferase 1

SHMT2:

mitochondrial serine hydroxymethyltransferase 2

TYMS:

thymidylate synthase

THF:

tetrahydrofolate

FPLD:

familial partial lipodystrophy

LMNA:

lamin A/C

PIAS3:

protein inhibitor of activated STAT 3

UBC9:

SUMO-conjugating enzyme UBC9, ubiquitin carrier protein 9

PKM2:

pyruvate kinase, muscle, isozyme 2

References

  • Agbor TA, Cheong A, Comerford KM, Scholz CC, Bruning U, Clarke A, Cummins EP, Cagney G, Taylor CT (2011) Small ubiquitin-related modifier (SUMO)-1 promotes glycolysis in hypoxia. J Biol Chem 286:4718–4726

    Article  CAS  PubMed  Google Scholar 

  • Alkuraya FS, Saadi I, Lund JJ, Turbe-Doan A, Morton CC, Maas RL (2006) SUMO1 haploinsufficiency leads to cleft lip and palate. Science 313:1751

    Article  PubMed  Google Scholar 

  • Anderson DD, Stover PJ (2009) SHMT1 and SHMT2 are functionally redundant in nuclear de novo thymidylate biosynthesis. PLoS One 4:e5839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson DD, Woeller CF, Stover PJ (2007) Small ubiquitin-like modifier-1 (SUMO-1) modification of thymidylate synthase and dihydrofolate reductase. Clin Chem Lab Med 45:1760–1763

    Article  CAS  PubMed  Google Scholar 

  • Anderson EJ, Lustig ME, Boyle KE, Woodlief TL, Kane DA, Lin CT, Price JW 3rd, Kang L, Rabinovitch PS, Szeto HH, Houmard JA, Cortright RN, Wasserman DH, Neufer PD (2009) Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest 119:573–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson DD, Eom JY, Stover PJ (2012a) Competition between sumoylation and ubiquitination of serine hydroxymethyltransferase 1 determines its nuclearlLocalization and its accumulation in the nucleus. J Biol Chem 287:4790–4799

    Article  CAS  PubMed  Google Scholar 

  • Anderson DD, Woeller CF, Chiang EP, Shane B, Stover PJ (2012b) Serine hydroxymethyltransferase anchors de novo thymidylate synthesis pathway to nuclear lamina for DNA synthesis. J Biol Chem 287:7051–7062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ao Q, Su W, Guo S, Cai L, Huang L (2015) SENP1 desensitizes hypoxic ovarian cancer cells to cisplatin by up-regulating HIF-1alpha. Sci Report 5:16396

    Article  CAS  Google Scholar 

  • Aon MA, Bhatt N, Cortassa SC (2014) Mitochondrial and cellular mechanisms for managing lipid excess. Front Physiol 5:282

    Article  PubMed  PubMed Central  Google Scholar 

  • Arito M, Horiba T, Hachimura S, Inoue J, Sato R (2008) Growth factor-induced phosphorylation of sterol regulatory element-binding proteins inhibits sumoylation, thereby stimulating the expression of their target genes, low density lipoprotein uptake, and lipid synthesis. J Biol Chem 283:15224–15231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae SH, Jeong JW, Park JA, Kim SH, Bae MK, Choi SJ, Kim KW (2004) Sumoylation increases HIF-1 stability and its transcriptional activity. Biochem Biophys Res Commun 324:394–400

    Article  CAS  PubMed  Google Scholar 

  • Balasubramaniyan N, Luo Y, Sun AQ, Suchy FJ (2013) SUMOylation of the farnesoid X receptor (FXR) regulates the expression of FXR target genes. J Biol Chem 288:13850–13862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaudin AE, Abarinov EV, Noden DM, Perry CA, Chu S, Stabler SP, Allen RH, Stover PJ (2011) Shmt1 and de novo thymidylate biosynthesis underlie folate-responsive neural tube defects in mice. Am J Clin Nutr 93:789–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaudin AE, Abarinov EV, Malysheva O, Perry CA, Caudill M, Stover PJ (2012) Dietary folate, but not choline, modifies neural tube defect risk in Shmt1 knockout mice. Am J Clin Nutr 95:109–114

    Article  CAS  PubMed  Google Scholar 

  • Becker J, Barysch SV, Karaca S, Dittner C, Hsiao HH, Berriel Diaz M, Herzig S, Urlaub H, Melchior F (2013) Detecting endogenous SUMO targets in mammalian cells and tissues. Nat Struct Mol Biol 20:525–531

    Article  CAS  PubMed  Google Scholar 

  • Bernardi R, Pandolfi PP (2007) Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 8:1006–1016

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee J, Alahari S, Sallais J, Tagliaferro A, Post M, Caniggia I (2016) Dynamic regulation of HIF1Alpha stability by SUMO2/3 and SENP3 in the human placenta. Placenta 40:8–17

    Article  CAS  PubMed  Google Scholar 

  • Borden KLB (2002) Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions for PML nuclear bodies. Mol Cell Biol 22:5259–5269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bossis G, Melchior F (2006) Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol Cell 21:349–357

    Article  CAS  PubMed  Google Scholar 

  • Bossis G, Malnou CE, Farras R, Andermarcher E, Hipskind R, Rodriguez M, Schmidt D, Muller S, Jariel-Encontre I, Piechaczyk M (2005) Down-regulation of c-Fos/c-Jun AP-1 dimer activity by sumoylation. Mol Cell Biol 25:6964–6979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boudreau E, Labib S, Bertrand AT, Decostre V, Bolongo PM, Sylvius N, Bonne G, Tesson F (2012) Lamin A/C mutants disturb Sumo1 localization and sumoylation in vitro and in vivo. PLoS One 7

    Google Scholar 

  • Braschi E, Zunino R, McBride HM (2009) MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission. EMBO Rep 10:748–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown MS, Goldstein JL (2009) Cholesterol feedback: from Schoenheimer’s bottle to Scap’s MELADL. J Lipid Res 50(Suppl):S15–S27

    PubMed  PubMed Central  Google Scholar 

  • Bruderer R, Tatham MH, Plechanovova A, Matic I, Garg AK, Hay RT (2011) Purification and identification of endogenous polySUMO conjugates. EMBO Rep 12:142–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bueler H (2010) Mitochondrial dynamics, cell death and the pathogenesis of Parkinson’s disease. Apoptosis 15:1336–1353

    Article  PubMed  CAS  Google Scholar 

  • Bursomanno S, Beli P, Khan AM, Minocherhomji S, Wagner SA, Bekker-Jensen S, Mailand N, Choudhary C, Hickson ID, Liu Y (2015) Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells. DNA Repair 25:84–96

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Hegele RA (2000) Nuclear lamin A/C R482Q mutation in canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 9:109–112

    Article  CAS  PubMed  Google Scholar 

  • Chan JYH, Tsai CY, Wu CHY, Li FCH, Dai KY, Sun EYH, Chan SHH, Chang AYW (2011) Sumoylation of hypoxia-inducible factor-1 alpha ameliorates failure of brain stem cardiovascular regulation in experimental brain death. PLoS One 6

    Google Scholar 

  • Chang E, Abe J (2016) Kinase-SUMO networks in diabetes-mediated cardiovascular disease. Metabolism 65:623–633

    Article  CAS  PubMed  Google Scholar 

  • Chang CR, Blackstone C (2007) Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J Biol Chem 282:21583–21587

    Article  CAS  PubMed  Google Scholar 

  • Chang CR, Manlandro CM, Arnoult D, Stadler J, Posey AE, Hill RB, Blackstone C (2010) A lethal de novo mutation in the middle domain of the dynamin-related GTPase Drp1 impairs higher order assembly and mitochondrial division. J Biol Chem 285:32494–32503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Yang T, Liu F, Li H, Guo Y, Yang H, Xu J, Song J, Zhu Z, Liu D (2014) Inflammatory factor-specific sumoylation regulates NF-kappaB signalling in glomerular cells from diabetic rats. Inflamm Res 63:23–31

    Article  CAS  PubMed  Google Scholar 

  • Chen LQ, Cheung LS, Feng L, Tanner W, Frommer WB (2015) Transport of sugars. Annu Rev Biochem 84:865–894

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Ding G, Qin Q, Huang Y, Lewis W, He N, Evans RM, Schneider MD, Brako FA, Xiao Y, Chen YE, Yang Q (2004) Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 10:1245–1250

    Article  CAS  PubMed  Google Scholar 

  • Choi SJ, Chung SS, Rho EJ, Lee HW, Lee MH, Choi HS, Seol JH, Baek SH, Bang OS, Chung CH (2006) Negative modulation of RXR alpha transcriptional activity by small ubiquitin-related modifier (SUMO) modification and its reversal by SUMO-specific protease SUSP1. J Biol Chem 281:30669–30677

    Article  CAS  PubMed  Google Scholar 

  • Chung SS, Ahn BY, Kim M, Kho JH, Jung HS, Park KS (2011) SUMO modification selectively regulates transcriptional activity of peroxisome-proliferator-activated receptor gamma in C2C12 myotubes. Biochem J 433:155–161

    Article  CAS  PubMed  Google Scholar 

  • Cimarosti H, Lindberg C, Bomholt SF, Ronn LCB, Henley JM (2008) Increased protein SUMOylation following focal cerebral ischemia. Neuropharmacology 54:280–289

    Article  CAS  PubMed  Google Scholar 

  • Civitarese AE, Ravussin E (2008) Mitochondrial energetics and insulin resistance. Endocrinology 149:950–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui W, Sun M, Zhang S, Shen X, Galeva N, Williams TD, Staudinger JL (2016) A SUMO-acetyl switch in PXR biology. Biochim Biophys Acta. doi:10.1016/j.bbagrm.2016.02.008 [Epub ahead of print]

    Google Scholar 

  • Dai XQ, Plummer G, Casimir M, Kang YH, Hajmrle C, Gaisano HY, Fox JEM, MacDonald PE (2011) SUMOylation regulates insulin exocytosis downstream of secretory granule docking in rodents and humans. Diabetes 60:838–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai XQ, Spigelman AF, Khan S, Braun M, Manning Fox JE, MacDonald PE (2014) SUMO1 enhances cAMP-dependent exocytosis and glucagon secretion from pancreatic alpha-cells. J Physiol 592:3715–3726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dangoumau A, Marouillat S, Burlaud Gaillard J, Uzbekov R, Veyrat-Durebex C, Blasco H, Arnoult C, Corcia P, Andres CR, Vourc’h P (2016) Inhibition of pathogenic mutant SOD1 aggregation in cultured motor neuronal cells by prevention of its SUMOylation on lysine 75. Neurodegener Dis 16:161–171

    Article  CAS  PubMed  Google Scholar 

  • de The H, Le Bras M, Lallemand-Breitenbach V (2012) The cell biology of disease: acute promyelocytic leukemia, arsenic, and PML bodies. J Cell Biol 198:11–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20:649–688

    CAS  PubMed  Google Scholar 

  • Diezko R, Suske G (2013) Ligand binding reduces SUMOylation of the peroxisome proliferator-activated receptor gamma (PPARgamma) activation function 1 (AF1) domain. PLoS One 8:e66947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiRenzo J, Soderstrom M, Kurokawa R, Ogliastro MH, Ricote M, Ingrey S, Horlein A, Rosenfeld MG, Glass CK (1997) Peroxisome proliferator-activated receptors and retinoic acid receptors differentially control the interactions of retinoid X receptor heterodimers with ligands, coactivators, and corepressors. Mol Cell Biol 17:2166–2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Q, Giorgianni F, Deng X, Beranova-Giorgianni S, Bridges D, Park EA, Raghow R, Elam MB (2014) Phosphorylation of sterol regulatory element binding protein-1a by protein kinase A (PKA) regulates transcriptional activity. Biochem Biophys Res Commun 449:449–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorval V, Fraser PE (2007) SUMO on the road to neurodegeneration. Biochim Biophys Acta 1773:694–706

    Article  CAS  PubMed  Google Scholar 

  • Druker J, Liberman AC, Antunica-Noguerol M, Gerez J, Paez-Pereda M, Rein T, Iniguez-Lluhi JA, Holsboer F, Arzt E (2013) RSUME enhances glucocorticoid receptor SUMOylation and transcriptional activity. Mol Cell Biol 33:2116–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du JX, Bialkowska AB, McConnell BB, Yang VW (2008) SUMOylation regulates nuclear localization of Kruppel-like factor 5. J Biol Chem 283:31991–32002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckermann K (2013) SUMO and Parkinson’s disease. Neuromol Med 15:737–759

    Article  CAS  Google Scholar 

  • Eifler K, Vertegaal AC (2015) Mapping the SUMOylated landscape. FEBS J 282:3669–3680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enserink JM (2015) Sumo and the cellular stress response. Cell Div 10:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faresse N (2014) Post-translational modifications of the mineralocorticoid receptor: how to dress the receptor according to the circumstances? J Steroid Biochem Mol Biol 143:334–342

    Article  CAS  PubMed  Google Scholar 

  • Ferdaoussi M, Dai X, Jensen MV, Wang R, Peterson BS, Huang C, Ilkayeva O, Smith N, Miller N, Hajmrle C, Spigelman AF, Wright RC, Plummer G, Suzuki K, Mackay JP, van de Bunt M, Gloyn AL, Ryan TE, Norquay LD, Brosnan MJ, Trimmer JK, Rolph TP, Kibbey RG, Manning Fox JE, Colmers WF, Shirihai OS, Neufer PD, Yeh ET, Newgard CB, MacDonald PE (2015) Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional beta cells. J Clin Invest 125:3847–3860

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93:884S–8890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field MS, Kamynina E, Agunloye OC, Liebenthal RP, Lamarre SG, Brosnan ME, Brosnan JT, Stover PJ (2014) Nuclear enrichment of folate cofactors and methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) protect de novo thymidylate biosynthesis during folate deficiency. J Biol Chem 289:29642–29650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field MS, Kamynina E, Watkins D, Rosenblatt DS, Stover PJ (2015) Human mutations in methylenetetrahydrofolate dehydrogenase 1 impair nuclear de novo thymidylate biosynthesis. Proc Natl Acad Sci U S A 112:400–405

    Article  CAS  PubMed  Google Scholar 

  • Field MS, Kamynina E, Stover PJ (2016) MTHFD1 regulates nuclear de novo thymidylate biosynthesis and genome stability. Biochimie 126:27–30

    Article  CAS  PubMed  Google Scholar 

  • Figueroa-Romero C, Iniguez-Lluhi JA, Stadler J, Chang CR, Arnoult D, Keller PJ, Hong Y, Blackstone C, Feldman EL (2009) SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle. FASEB J 23:3917–3927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filipp FV (2013) Cancer metabolism meets systems biology: pyruvate kinase isoform PKM2 is a metabolic master regulator. J Carcinog 12:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flotho A, Melchior F (2013) Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem 82:357–385

    Article  CAS  PubMed  Google Scholar 

  • Foran E, Rosenblum L, Bogush AI, Trotti D (2013) Sumoylation of critical proteins in amyotrophic lateral sclerosis: emerging pathways of pathogenesis. Neruomol Med 15:760–770

    Article  CAS  Google Scholar 

  • Fox JT, Stover PJ (2009) Mechanism of the internal ribosome entry site-mediated translation of serine hydroxymethyltransferase 1. J Biol Chem 284:31085–31096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox JT, Shin WK, Caudill MA, Stover PJ (2009) A UV-responsive internal ribosome entry site enhances serine hydroxymethyltransferase 1 expression for DNA damage repair. J Biol Chem 284:31097–31108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frazier AE, Kiu C, Stojanovski D, Hoogenraad NJ, Ryan MT (2006) Mitochondrial morphology and distribution in mammalian cells. Biol Chem 387:1551–1558

    Article  CAS  PubMed  Google Scholar 

  • Fu CH, Ahmed K, Ding HS, Ding X, Lan JP, Yang ZH, Miao Y, Zhu YY, Shi YY, Zhu JD, Huang H, Yao XB (2005) Stabilization of PML nuclear localization by conjugation and oligomerization of SUMO-3. Oncogene 24:5401–5413

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Yu HM, Chiu SY, Mirando AJ, Maruyama EO, Cheng JG, Hsu W (2014) Disruption of SUMO-specific protease 2 induces mitochondria mediated neurodegeneration. PLoS Genet 10:e1004579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gareau JR, Lima CD (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 11:861–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Germain P, Staels B, Dacquet C, Spedding M, Laudet V (2006) Overview of nomenclature of nuclear receptors. Pharmacol Rev 58:685–704

    Article  CAS  PubMed  Google Scholar 

  • Ghisletti S, Huang W, Ogawa S, Pascual G, Lin ME, Willson TM, Rosenfeld MG, Glass CK (2007) Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma. Mol Cell 25:57–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giorgino F, de Robertis O, Laviola L, Montrone C, Perrini S, McCowen KC, Smith RJ (2000) The sentrin-conjugating enzyme mUbc9 interacts with GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal muscle cells. Proc Natl Acad Sci USA 97:1125–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein JL, Brown MS (2015) A century of cholesterol and coronaries: from plaques to genes to statins. Cell 161:161–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein JL, DeBose-Boyd RA, Brown MS (2006) Protein sensors for membrane sterols. Cell 124:35–46

    Article  CAS  PubMed  Google Scholar 

  • Golebiowski F, Matic I, Tatham MH, Cole C, Yin YL, Nakamura A, Cox J, Barton GJ, Mann M, Hay RT (2009) System-wide changes to SUMO modifications in response to heat shock. Sci Signal 2

    Google Scholar 

  • Gooding JR, Jensen MV, Dai X, Wenner BR, Lu D, Arumugam R, Ferdaoussi M, MacDonald PE, Newgard CB (2015) Adenylosuccinate is an insulin secretagogue derived from glucose-induced purine metabolism. Cell Rep 13:157–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodpaster BH (2013) Mitochondrial deficiency is associated with insulin resistance. Diabetes 62:1032–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grygiel-Gorniak B (2014) Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications--a review. Nutr J 13:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gu J, Fan Y, Liu X, Zhou L, Cheng J, Cai R, Xue S (2014) SENP1 protects against myocardial ischaemia/reperfusion injury via a HIF1alpha-dependent pathway. Cardiovasc Res 104:83–92

    Article  CAS  PubMed  Google Scholar 

  • Guerra de Souza AC, Prediger RD, Cimarosti H (2016) SUMO-regulated mitochondrial function in Parkinson’s disease. J Neurochem 137:673–686

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Henley JM (2014) Wrestling with stress: roles of protein SUMOylation and deSUMOylation in cell stress response. IUBMB Life 66:71–77

    Google Scholar 

  • Guo C, Hildick KL, Luo J, Dearden L, Wilkinson KA, Henley JM (2013) SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia. EMBO J 32:1514–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajmrle C, Ferdaoussi M, Plummer G, Spigelman AF, Lai K, Manning Fox JE, MacDonald PE (2014) SUMOylation protects against IL-1beta-induced apoptosis in INS-1 832/13 cells and human islets. Am J Phys 307:E664–E673

    CAS  Google Scholar 

  • Harder Z, Zunino R, McBride H (2004) Sumol conjugates mitochondrial substrates and participates in mitochondrial fission. Curr Biol 14:340–345

    Article  CAS  PubMed  Google Scholar 

  • Hay RT (2007) SUMO-specific proteases: a twist in the tail. Trends Cell Biol 17:370–376

    Article  CAS  PubMed  Google Scholar 

  • Hecker CM, Rabiller M, Haglund K, Bayer P, Dikic I (2006) Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 281:16117–16127

    Article  CAS  PubMed  Google Scholar 

  • Hendriks IA, D’Souza RC, Yang B, Verlaan-de Vries M, Mann M, Vertegaal AC (2014) Uncovering global SUMOylation signaling networks in a site-specific manner. Nat Struct Mol Biol 21:927–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendriks IA, D’Souza RC, Chang JG, Mann M, Vertegaal AC (2015) System-wide identification of wild-type SUMO-2 conjugation sites. Nat Commun 6:7289

    Article  PubMed  PubMed Central  Google Scholar 

  • Herbig K, Chiang EP, Lee LR, Hills J, Shane B, Stover PJ (2002) Cytoplasmic serine hydroxymethyltransferase mediates competition between folate-dependent deoxyribonucleotide and S-adenosylmethionine biosyntheses. J Biol Chem 277:38381–38389

    Article  CAS  PubMed  Google Scholar 

  • Hickey CM, Wilson NR, Hochstrasser M (2012) Function and regulation of SUMO proteases. Nat Rev Mol Cell Biol 13:755–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano Y, Murata S, Tanaka K, Shimizu M, Sato R (2003) Sterol regulatory element-binding proteins are negatively regulated through SUMO-1 modification independent of the ubiquitin/26 S proteasome pathway. J Biol Chem 278:16809–16819

    Article  CAS  PubMed  Google Scholar 

  • Holmstrom SR, Chupreta S, So AYL, Iniguez-Lluhi JA (2008) SUMO-mediated inhibition of glucocorticoid receptor synergistic activity depends on stable assembly at the promoter but not on DAXX. Mol Endocrinol 22:2061–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoppe JB, Salbego CG, Cimarosti H (2015) SUMOylation: novel neuroprotective approach for Alzheimer’s disease? Aging Dis 6:322–330

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu G, Xu CS, Staudinger JL (2010) Pregnane X receptor Is SUMOylated to repress the inflammatory response. J Pharmacol Exp Ther 335:342–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua X, Yokoyama C, Wu J, Briggs MR, Brown MS, Goldstein JL, Wang X (1993) SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc Natl Acad Sci U S A 90:11603–11607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua G, Ganti KP, Chambon P (2016a) Glucocorticoid-induced tethered transrepression requires SUMOylation of GR and formation of a SUMO-SMRT/NCoR1-HDAC3 repressing complex. Proc Natl Acad Sci U S A 113:E635–E643

    Article  CAS  PubMed  Google Scholar 

  • Hua G, Paulen L, Chambon P (2016b) GR SUMOylation and formation of an SUMO-SMRT/NCoR1-HDAC3 repressing complex is mandatory for GC-induced IR nGRE-mediated transrepression. Proc Natl Acad Sci U S A 113:E626–E634

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Ghisletti S, Saijo K, Gandhi M, Aouadi M, Tesz GJ, Zhang DX, Yao J, Czech MP, Goode BL, Rosenfeld MG, Glass CK (2011) Coronin 2A mediates actin-dependent de-repression of inflammatory response genes. Nature 470:414–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Xu L, Zhou X, Gao C, Yang M, Chen G, Zhu J, Jiang L, Gan H, Gou F, Feng H, Peng J, Xu Y (2013) High glucose induces activation of NF-kappaB inflammatory signaling through IkappaBalpha sumoylation in rat mesangial cells. Biochem Biophys Res Commun 438:568–574

    Article  CAS  PubMed  Google Scholar 

  • Impens F, Radoshevich L, Cossart P, Ribet D (2014) Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli. Proc Natl Acad Sci U S A 111:12432–12437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishov AM, Sotnikov AG, Negorev D, Vladimirova OV, Neff N, Kamitani T, Yeh ETH, Strauss JF, Maul GG (1999) PML is critical for ND10 formation and recruits the PML-interacting protein Daxx to this nuclear structure when modified by SUMO-1. J Cell Biol 147:221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanschitz L, Takahashi Y, Jollivet F, Ayrault O, Le Bras M, de The H (2015) PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence. Proc Natl Acad Sci U S A 112:14278–14283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, Kafri R, Kirschner MW, Clish CB, Mootha VK (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336:1040–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jardin C, Horn AH, Sticht H (2015) Binding properties of SUMO-interacting motifs (SIMs) in yeast. J Mol Model 21:50

    Article  PubMed  CAS  Google Scholar 

  • Jennewein C, Kuhn AM, Schmidt MV, Meilladec-Jullig V, von Knethen A, Gonzalez FJ, Brune B (2008) Sumoylation of peroxisome proliferator-activated receptor gamma by apoptotic cells prevents lipopolysaccharide-induced NCoR removal from kappa B binding sites proinflammatory cytokines. J Immunol 181:5646–5652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jentsch S, Psakhye I (2013) Control of nuclear activities by substrate-selective and protein-group SUMOylation. Annu Rev Genet 47:167–186

    Article  CAS  PubMed  Google Scholar 

  • Jeon TI, Osborne TF (2012) SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol Metab 23:65–72

    Article  CAS  PubMed  Google Scholar 

  • Kaminsky R, Denison C, Bening-Abu-Shach U, Chisholm AD, Gygi SP, Broday L (2009) SUMO regulates the assembly and function of a cytoplasmic intermediate filament protein in C. elegans. Develop. Cell 17:724–735

    CAS  Google Scholar 

  • Kamitani T, Nguyen HP, Kito K, Fukuda-Kamitani T, Yeh ET (1998) Covalent modification of PML by the sentrin family of ubiquitin-like proteins. J Biol Chem 273:3117–3120

    Article  CAS  PubMed  Google Scholar 

  • Kang X, Li J, Zou Y, Yi J, Zhang H, Cao M, Yeh ETH, Cheng J (2010) PIASy stimulates HIF1 alpha SUMOylation and negatively regulates HIF1 alpha activity in response to hypoxia. Oncogene 29:5568–5578

    Article  CAS  PubMed  Google Scholar 

  • Kauppinen A, Suuronen T, Ojala J, Kaarniranta K, Salminen A (2013) Antagonistic crosstalk between NF-kappaB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal 25:1939–1948

    Article  CAS  PubMed  Google Scholar 

  • Kelley DE, He J, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–2950

    Article  CAS  PubMed  Google Scholar 

  • Kemper JK (2011) Regulation of FXR transcriptional activity in health and disease: emerging roles of FXR cofactors and post-translational modifications. Biochim Biophys Acta 1812:842–850

    Article  CAS  PubMed  Google Scholar 

  • Kersten S (2014) Integrated physiology and systems biology of PPARalpha. Mol Metab 3:354–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim EM, Lee HH, Kim SH, Son YO, Lee SJ, Han J, Bae J, Kim SJ, Park CG, Park Y, Hwang KW, Chun T (2011) The mouse small ubiquitin-like modifier-2 (SUMO-2) inhibits interleukin-12 (IL-12) production in mature dendritic cells by blocking the translocation of the p65 subunit of NFkappaB into the nucleus. Mol Immunol 48:2189–2197

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Fiske BP, Birsoy K, Freinkman E, Kami K, Possemato RL, Chudnovsky Y, Pacold ME, Chen WW, Cantor JR, Shelton LM, Gui DY, Kwon M, Ramkissoon SH, Ligon KL, Kang SW, Snuderl M, Vander Heiden MG, Sabatini DM (2015a) SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 520:363–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DH, Xiao Z, Kwon S, Sun X, Ryerson D, Tkac D, Ma P, Wu SY, Chiang CM, Zhou E, Xu HE, Palvimo JJ, Chen LF, Kemper B, Kemper JK (2015b) A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity. EMBO J 34:184–199

    Article  PubMed  CAS  Google Scholar 

  • Kim EY, Zhang Y, Beketaev I, Segura AM, Yu W, Xi Y, Chang J, Wang J (2015c) SENP5, a SUMO isopeptidase, induces apoptosis and cardiomyopathy. J Mol Cell Cardiol 78:154–164

    Article  CAS  PubMed  Google Scholar 

  • Komatsu T, Mizusaki H, Mukai T, Ogawa H, Baba D, Shirakawa M, Hatakeyama S, Nakayama KI, Yamamoto H, Kikuchi A, Morohashi KI (2004) Small ubiquitin-like modifier 1 (SUMO-1) modification of the synergy control motif of Ad4 binding protein/steroidogenic factor 1 (Ad4BP/SF-1) regulates synergistic transcription between Ad4BP/SF-1 and Sox9. Mol Endocrinol 18:2451–2462

    Article  CAS  PubMed  Google Scholar 

  • Koo YD, Choi JW, Kim M, Chae S, Ahn BY, Kim M, Oh BC, Hwang D, Seol JH, Kim YB, Park YJ, Chung SS, Park KS (2015) SUMO-specific protease 2 (SENP2) is an important regulator of fatty acid metabolism in skeletal muscle. Diabetes 64:2420–2431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, Bain J, Stevens R, Dyck JR, Newgard CB, Lopaschuk GD, Muoio DM (2008) Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 7:45–56

    Article  CAS  PubMed  Google Scholar 

  • Kroetz MB, Hochstrasser M (2009) Identification of SUMO-interacting proteins by yeast two-hybrid analysis. Methods Mol Biol 497:107–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krumova P, Meulmeester E, Garrido M, Tirard M, Hsiao HH, Bossis G, Urlaub H, Zweckstetter M, Kugler S, Melchior F, Bahr M, Weishaupt JH (2011) Sumoylation inhibits alpha-synuclein aggregation and toxicity. J Cell Biol 194:49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamoliatte F, Caron D, Durette C, Mahrouche L, Maroui MA, Caron-Lizotte O, Bonneil E, Chelbi-Alix MK, Thibault P (2014) Large-scale analysis of lysine SUMOylation by SUMO remnant immunoaffinity profiling. Nat Commun 5:5409

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Hallenbeck JM (2013) SUMO and ischemic tolerance. NeuroMolecular Med 15:771–781

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Miyamoto S (2011) Expanding NF kappa B and SUMO ties. Cell Cycle 10:3983–3984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MB, Lebedeva LA, Suzawa M, Wadekar SA, Desclozeaux M, Ingraham HA (2005) The DEAD-Box protein DP103 (Ddx20 or gemin-3) represses orphan nuclear receptor activity via SUMO modification. Mol Cell Biol 25:1879–1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Miyake S, Wakita H, McMullen DC, Azuma Y, Auh S, Hallenbeck JM (2007) Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells. J Cereb Blood Flow Metab 27:950–962

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Park SM, Kim OS, Lee CS, Woo JH, Park SJ, Joe EH, Jou I (2009a) Differential SUMOylation of LXR alpha and LXR beta mediates transrepression of STAT1 inflammatory signaling in IFN-gamma-stimulated brain astrocytes. Mol Cell 35:806–817

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Castri P, Bembry J, Maric D, Auh S, Hallenbeck JM (2009b) SUMOylation participates in induction of ischemic tolerance. J Neurochem 109:257–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YJ, Mou Y, Maric D, Klimanis D, Auh S, Hallenbeck JM (2011) Elevated global SUMOylation in Ubc9 transgenic mice protects their brains against focal cerebral ischemic damage. PLoS One 6

    Google Scholar 

  • Lee L, Sakurai M, Matsuzaki S, Arancio O, Fraser P (2013) SUMO and Alzheimer’s disease. NeuroMolecular Med 15:720–736

    Article  CAS  PubMed  Google Scholar 

  • Lee L, Dale E, Staniszewski A, Zhang H, Saeed F, Sakurai M, Fa M, Orozco I, Michelassi F, Akpan N, Lehrer H, Arancio O (2014a) Regulation of synaptic plasticity and cognition by SUMO in normal physiology and Alzheimer’s disease. Sci Report 4:7190

    Article  CAS  Google Scholar 

  • Lee GY, Jang H, Lee JH, Huh JY, Choi S, Chung J, Kim JB (2014b) PIASy-mediated sumoylation of SREBP1c regulates hepatic lipid metabolism upon fasting signaling. Mol Cell Biol 34:926–938

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee YJ, Mou Y, Klimanis D, Bernstock JD, Hallenbeck JM (2014c) Global SUMOylation is a molecular mechanism underlying hypothermia-induced ischemic tolerance. Front Cell Neurosci 8:416

    PubMed  PubMed Central  Google Scholar 

  • Lee J, Yang DJ, Lee S, Hammer GD, Kim KW, Elmquist JK (2016a) Nutritional conditions regulate transcriptional activity of SF-1 by controlling sumoylation and ubiquitination. Sci Report 6:19143

    Article  CAS  Google Scholar 

  • Lee YJ, Bernstock JD, Nagaraja N, Ko B, Hallenbeck JM (2016b) Global SUMOylation facilitates the multimodal neuroprotection afforded by quercetin against the deleterious effects of oxygen/glucose deprivation and the restoration of oxygen/glucose. J Neurochem 138:101–116

    Article  CAS  PubMed  Google Scholar 

  • Leidner J, Voogdt C, Niedenthal R, Moller P, Marienfeld U, Marienfeld RB (2014) SUMOylation attenuates the transcriptional activity of the NF-kappaB subunit RelB. J Cell Biochem 115:1430–1440

    Article  CAS  PubMed  Google Scholar 

  • Leuenberger N, Pradervand S, Wahli W (2009) Sumoylated PPARalpha mediates sex-specific gene repression and protects the liver from estrogen-induced toxicity in mice. J Clin Invest 119:3138–3148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li MY, Guo DH, Isales CM, Eizirik DL, Atkinson M, She JX, Wang CY (2005) SUMO wrestling with type 1 diabetes. J Mol Med 83:504–513

    Article  CAS  PubMed  Google Scholar 

  • Liu LB, Omata W, Kojima I, Shibata H (2007) The SUMO conjugating enzyme Ubc9 is a regulator of GLUT4 turnover and targeting to the insulin-responsive storage compartment in 3T3-L1 adipocytes. Diabetes 56:1977–1985

    Article  CAS  PubMed  Google Scholar 

  • Lloyd DJ, Trembath RC, Shackleton S (2002) A novel interaction between lamin A and SREBP1: implications for partial lipodystrophy and other laminopathies. Hum Mol Genet 11:769–777

    Article  CAS  PubMed  Google Scholar 

  • Luo W, Semenza GL (2012) Emerging roles of PKM2 in cell metabolism and cancer progression. Trends Endocrinol Metab 23:560–566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • MacFarlane AJ, Liu X, Perry CA, Flodby P, Allen RH, Stabler SP, Stover PJ (2008) Cytoplasmic serine hydroxymethyltransferase regulates the metabolic partitioning of methylenetetrahydrofolate but is not essential in mice. J Biol Chem 283:25846–25853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacFarlane AJ, Anderson DD, Flodby P, Perry CA, Allen RH, Stabler SP, Stover PJ (2011a) Nuclear localization of de novo thymidylate biosynthesis pathway is required to prevent uracil accumulation in DNA. J Biol Chem 286:44015–44022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macfarlane AJ, Perry CA, McEntee MF, Lin DM, Stover PJ (2011b) Shmt1 heterozygosity impairs folate-dependent thymidylate synthesis capacity and modifies risk of Apc(min)-mediated intestinal cancer risk. Cancer Res 71:2098–2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makhnevych T, Sydorskyy Y, Xin X, Srikumar T, Vizeacoumar FJ, Jeram SM, Li Z, Bahr S, Andrews BJ, Boone C, Raught B (2009) Global map of SUMO function revealed by protein-protein interaction and genetic networks. Mol Cell 33:124–135

    Article  CAS  PubMed  Google Scholar 

  • Manning Fox JE, Hajmrle C, Macdonald PE (2012) Novel roles of SUMO in pancreatic beta-cells: thinking outside the nucleus. Can J Physiol Pharmacol 90:765–770

    Article  CAS  PubMed  Google Scholar 

  • Manza LL, Codreanu SG, Stamer SL, Smith DL, Wells KS, Roberts RL, Liebler DC (2004) Global shifts in protein sumoylation in response to electrophile and oxidative stress. Chem Res Toxicol 17:1706–1715

    Article  CAS  PubMed  Google Scholar 

  • Martiniova L, Field MS, Finkelstein JL, Perry CA, Stover PJ (2015) Maternal dietary uridine causes, and deoxyuridine prevents, neural tube closure defects in a mouse model of folate-responsive neural tube defects. Am J Clin Nutr 101:860–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins WC, Tasca CI, Cimarosti H (2016) Battling Alzheimer’s disease: targeting SUMOylation-mediated pathways. Neurochem Res 41:568–578

    Article  CAS  PubMed  Google Scholar 

  • Mathews CK (2015) Deoxyribonucleotide metabolism, mutagenesis and cancer. Nat Rev Cancer 15:528–539

    Article  CAS  PubMed  Google Scholar 

  • McMillan LE, Brown JT, Henley JM, Cimarosti H (2011) Profiles of SUMO and ubiquitin conjugation in an Alzheimer’s disease model. Neurosci Lett 502:201–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra P, Chan DC (2014) Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol 15:634–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriuchi T, Kuroda M, Kusumoto F, Osumi T, Hirose F (2016) Lamin A reassembly at the end of mitosis is regulated by its SUMO-interacting motif. Exp Cell Res 342:83–94

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay D, Dasso M (2007) Modification in reverse: the SUMO proteases. Trends Biochem Sci 32:286–295

    Article  CAS  PubMed  Google Scholar 

  • Mziaut H, Trajkovski M, Kersting S, Ehninger A, Altkruger A, Lemaitre RP, Schmidt D, Saeger HD, Lee MS, Drechsel DN, Muller S, Solimena M (2006) Synergy of glucose and growth hormone signalling in islet cells through ICA512 and STAT5. Nat Cell Biol 8:435–445

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa K, Kohara T, Uehata Y, Miyakawa Y, Sato-Ueshima M, Okubo N, Asaka M, Takeda H, Kobayashi M (2016) PIAS3 enhances the transcriptional activity of HIF-1alpha by increasing its protein stability. Biochem Biophys Res Commun 469:470–476

    Article  CAS  PubMed  Google Scholar 

  • Niikura T, Kita Y, Abe Y (2014) SUMO3 modification accelerates the aggregation of ALS-linked SOD1 mutants. PLoS One 9:e101080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nunez-O’Mara A, Berra E (2013) Deciphering the emerging role of SUMO conjugation in the hypoxia-signaling cascade. Biol Chem 394:459–469

    Article  PubMed  CAS  Google Scholar 

  • Ohshima T, Koga H, Shimotohno K (2004) Transcriptional activity of peroxisome proliferator-activated receptor gamma is modulated by SUMO-1 modification. J Biol Chem 279:29551–29557

    Article  CAS  PubMed  Google Scholar 

  • Oishi Y, Manabe I, Tobe K, Ohsugi M, Kubota T, Fujiu K, Maemura K, Kubota N, Kadowaki T, Nagai R (2008) SUMOylation of Kruppel-like transcription factor 5 acts as a molecular switch in transcriptional programs of lipid metabolism involving PPAR-delta. Nat Med 14:656–666

    Article  CAS  PubMed  Google Scholar 

  • Paakinaho V, Kaikkonen S, Levonen AL, Palvimo JJ (2014) Electrophilic lipid mediator 15-deoxy-Delta12,14-prostaglandin j2 modifies glucocorticoid signaling via receptor SUMOylation. Mol Cell Biol 34:3202–3213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park S, Chang CY, Safi R, Liu X, Baldi R, Jasper JS, Anderson GR, Liu T, Rathmell JC, Dewhirst MW, Wood KC, Locasale JW, McDonnell DP (2016) ERRalpha-regulated lactate metabolism contributes to resistance to targeted therapies in breast cancer. Cell Rep 15:323–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascual G, Fong AL, Ogawa S, Gamliel A, Li AC, Perissi V, Rose DW, Willson TM, Rosenfeld MG, Glass CK (2005) A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 437:759–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pourcet B, Pineda-Torra I, Derudas B, Staels B, Glineur C (2010) SUMOylation of human peroxisome proliferator-activated receptor alpha inhibits its trans-activity through the recruitment of the nuclear corepressor NCoR. J Biol Chem 285:5983–5992

    Article  CAS  PubMed  Google Scholar 

  • Priyanka KD, Rana M, Subbarao N, Puri N, Tyagi RK (2016) Transcription regulation of nuclear receptor PXR: role of SUMO-1 modification and NDSM in receptor function. Mol Cell Endocrinol 420:194–207

    Article  CAS  PubMed  Google Scholar 

  • Prudent J, Zunino R, Sugiura A, Mattie S, Shore GC, McBride HM (2015) MAPL SUMOylation of Drp1 stabilizes an ER/mitochondrial platform required for cell death. Mol Cell 59:941–955

    Article  CAS  PubMed  Google Scholar 

  • Reddy PH, Reddy TP, Manczak M, Calkins MJ, Shirendeb U, Mao P (2011) Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases. Brain Res Rev 67:103–118

    Article  CAS  PubMed  Google Scholar 

  • Rytinki MM, Palvimo JJ (2009) SUMOylation attenuates the function of PGC-1 alpha. J Biol Chem 284:26184–26193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahin U, de The H, Lallemand-Breitenbach V (2014) PML nuclear bodies: assembly and oxidative stress-sensitive sumoylation. Nucleus 5:499–507

    Article  PubMed  PubMed Central  Google Scholar 

  • Saitoh H, Hinchey J (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275:6252–6258

    Article  CAS  PubMed  Google Scholar 

  • Sarge KD, Park-Sarge OK (2009) Sumoylation and human disease pathogenesis. Trends Biochem Sci 34:200–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuler M, Ali F, Chambon C, Duteil D, Bornert JM, Tardivel A, Desvergne B, Wahli W, Chambon P, Metzger D (2006) PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab 4:407–414

    Article  CAS  PubMed  Google Scholar 

  • Seifert A, Schofield P, Barton GJ, Hay RT (2015) Proteotoxic stress reprograms the chromatin landscape of SUMO modification. Sci Signal 8:rs7

    Article  PubMed  CAS  Google Scholar 

  • Shao RJ, Zhang FP, Tian F, Friberg PA, Wang XY, Sjoland H, Billig H (2004) Increase of SUMO-1 expression in response to hypoxia: direct interaction with HIF-1 alpha in adult mouse brain and heart in vivo. FEBS Lett 569:293–300

    Article  CAS  PubMed  Google Scholar 

  • Shimizu M, Yamashita D, Yamaguchi T, Hirose F, Osumi T (2006) Aspects of the regulatory mechanisms of PPAR functions: analysis of a bidirectional response element and regulation by sumoylation. Mol Cell Biochem 286:33–42

    Article  CAS  PubMed  Google Scholar 

  • Shin YS, Chan C, Vidal AJ, Brody T, Stokstad EL (1976) Subcellular localization of gamma-glutamyl carboxypeptidase and of folates. Biochim Biophys Acta 444:794–801

    Article  CAS  PubMed  Google Scholar 

  • Simon DN, Domaradzki T, Hofmann WA, Wilson KL (2013) Lamin A tail modification by SUMO1 is disrupted by familial partial lipodystrophy-causing mutations. Mol Biol Cell 24:342–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnova E, Griparic L, Shurland DL, van der Bliek AM (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song T, Li GL, Jing GP, Jiao XH, Shi JN, Zhang B, Wang L, Ye XM, Cao FL (2008) SUMO1 polymorphisms are associated with non-syndromic cleft Dip with or without cleft palate. Biochem Biophys Res Commun 377:1265–1268

    Article  CAS  PubMed  Google Scholar 

  • Sonoda J, Mehl IR, Chong LW, Nofsinger RR, Evans RM (2007) PGC-1beta controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis. Proc Natl Acad Sci U S A 104:5223–5228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soyal SM, Nofziger C, Dossena S, Paulmichl M, Patsch W (2015) Targeting SREBPs for treatment of the metabolic syndrome. Trends Pharmacol Sci 36:406–416

    Article  CAS  PubMed  Google Scholar 

  • Speckman RA, Garg A, Du F, Bennett L, Veile R, Arioglu E, Taylor SI, Lovett M, Bowcock AM (2000) Mutational and haplotype analyses of families with familial partial lipodystrophy (Dunnigan variety) reveal recurrent missense mutations in the globular C-terminal domain of lamin A/C. Am J Hum Genet 66:1192–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spoden GA, Morandell D, Ehehalt D, Fiedler M, Jansen-Durr P, Hermann M, Zwerschke W (2009) The SUMO-E3 ligase PIAS3 targets pyruvate kinase M2. J Cell Biochem 107(2):293–302

    Google Scholar 

  • Stehmeier P, Muller S (2009) Phospho-Regulated SUMO Interaction Modules Connect the SUMO System to CK2 Signaling. Mol Cell 33:400–409

    Article  CAS  PubMed  Google Scholar 

  • Stein S, Schoonjans K (2015) Molecular basis for the regulation of the nuclear receptor LRH-1. Curr Opin Cell Biol 33:26–34

    Article  CAS  PubMed  Google Scholar 

  • Stover PJ (2004) Physiology of folate and vitamin B12 in health and disease. Nutr Rev 62:S3–12

    Article  PubMed  Google Scholar 

  • Stover PJ, Field MS (2011) Trafficking of intracellular folates. Adv Nutr 2:325–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stover PJ, Chen LH, Suh JR, Stover DM, Keyomarsi K, Shane B (1997) Molecular cloning, characterization, and regulation of the human mitochondrial serine hydroxymethyltransferase gene. J Biol Chem 272:1842–1848

    Article  CAS  PubMed  Google Scholar 

  • Subramonian D, Raghunayakula S, Olsen JV, Beningo KA, Paschen W, Zhang XD (2014) Analysis of changes in SUMO-2/3 modification during breast cancer progression and metastasis. J Proteome Res 13:3905–3918

    Article  CAS  PubMed  Google Scholar 

  • Suen DF, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22:1577–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K (2007) Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 282:11521–11529

    Article  CAS  PubMed  Google Scholar 

  • Tahmasebi S, Ghorbani M, Savage P, Yan K, Gocevski G, Xiao L, You L, Yang XJ (2013) Sumoylation of Kruppel-like factor 4 inhibits pluripotency induction but promotes adipocyte differentiation. J Biol Chem 288:12791–12804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tallec LP, Kirsh O, Lecomte MC, Viengchareun S, Zennaro MC, Dejean A, Lombes M (2003) Protein inhibitor of activated signal transducer and activator of transcription 1 interacts with the N-terminal domain of mineralocorticoid receptor and represses its transcriptional activity: Implication of small ubiquitin-related modifier 1 modification. Mol Endocrinol 17:2529–2542

    Article  PubMed  CAS  Google Scholar 

  • Tammsalu T, Matic I, Jaffray EG, Ibrahim AF, Tatham MH, Hay RT (2014) Proteome-wide identification of SUMO2 modification sites. Sci Signal 7:rs2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tammsalu T, Matic I, Jaffray EG, Ibrahim AF, Tatham MH, Hay RT (2015) Proteome-wide identification of SUMO modification sites by mass spectrometry. Nat Protoc 10:1374–1388

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Huang G, Tong X, Xu L, Cai R, Li J, Zhou X, Song S, Huang C, Cheng J (2013) Role of SUMO-specific protease 2 in reprogramming cellular glucose metabolism. PLoS One 8:e63965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang MR, Wang YX, Han SY, Guo S, Wang D (2014) SUMO1 genetic polymorphisms may contribute to the risk of nonsyndromic cleft lip with or without palate: a meta-analysis. Genet Test Mol Biomarkers 18:616–624

    Article  CAS  PubMed  Google Scholar 

  • Tempe D, Vives E, Brockly F, Brooks H, De Rossi S, Piechaczyk M, Bossis G (2014) SUMOylation of the inducible (c-Fos:c-Jun)/AP-1 transcription complex occurs on target promoters to limit transcriptional activation. Oncogene 33:921–927

    Article  CAS  PubMed  Google Scholar 

  • Thorens B, Mueckler M (2010) Glucose transporters in the 21st Century. Am J Phys 298:E141–E145

    CAS  Google Scholar 

  • Tirard M, Almeida OFX, Hutzler P, Melchior F, Michaelidis TM (2007) Sumoylation and proteasomal activity determine the transactivation properties of the mineralocorticoid receptor. Mol Cell Endocrinol 268:20–29

    Article  CAS  PubMed  Google Scholar 

  • Tojo M, Matsuzaki K, Minami T, Honda Y, Yasuda H, Chiba T, Saya H, Fujii-Kuriyama Y, Nakao M (2002) The aryl hydrocarbon receptor nuclear transporter is modulated by the SUMO-1 conjugation system. J Biol Chem 277:46576–46585

    Article  CAS  PubMed  Google Scholar 

  • Tong L, Wu Z, Ran M, Chen Y, Yang L, Zhang H, Zhang L, Dong H, Xiong L (2015) The role of SUMO-conjugating enzyme Ubc9 in the neuroprotection of isoflurane preconditioning against ischemic neuronal injury. Mol Neurobiol 51:1221–1231

    Article  CAS  PubMed  Google Scholar 

  • Toyama EQ, Herzig S, Courchet J, Lewis TL Jr, Loson OC, Hellberg K, Young NP, Chen H, Polleux F, Chan DC, Shaw RJ (2016) Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351:275–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trajkovski M, Mziaut H, Altkruger A, Ouwendijk J, Knoch KP, Muller S, Solimena M (2004) Nuclear translocation of an ICA512 cytosolic fragment couples granule exocytosis and insulin expression in {beta}-cells. J Cell Biol 167:1063–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremblay AM, Wilson BJ, Yang XJ, Giguere V (2008) Phosphorylation-dependent sumoylation regulates estrogen-related receptor-alpha and -gamma transcriptional activity through a synergy control motif. Mol Endocrinol 22:570–584

    Article  CAS  PubMed  Google Scholar 

  • Treuter E, Venteclef N (2011) Transcriptional control of metabolic and inflammatory pathways by nuclear receptor SUMOylation. Biochim Biophys Acta 1812:909–918

    Article  CAS  PubMed  Google Scholar 

  • Twig G, Hyde B, Shirihai OS (2008) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta 1777:1092–1097

    Article  CAS  PubMed  Google Scholar 

  • Vadrot N, Duband-Goulet I, Cabet E, Attanda W, Barateau A, Vicart P, Gerbal F, Briand N, Vigouroux C, Oldenburg AR, Lund EG, Collas P, Buendia B (2015) The p.R482W substitution in A-type lamins deregulates SREBP1 activity in Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 24:2096–2109

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Carrera M (2016) Unraveling the effects of PPARbeta/delta on insulin resistance and cardiovascular disease. Trends Endocrinol Metab 27:319–334

    Article  CAS  PubMed  Google Scholar 

  • Venteclef N, Jakobsson T, Ehrlund A, Damdimopoulos A, Mikkonen L, Ellis E, Nilsson LM, Parini P, Janne OA, Gustafsson JA, Steffensen KR, Treuter E (2010) GPS2-dependent corepressor/SUMO pathways govern anti-inflammatory actions of LRH-1 and LXR beta in the hepatic acute phase response. Genes Dev 24:381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vu EH, Kraus RJ, Mertz JE (2007) Phosphorylation-dependent sumoylation of estrogen-related receptor alpha 1. Biochemistry 46:9795–9804

    Article  CAS  PubMed  Google Scholar 

  • Wadosky KM, Willis MS (2012) The story so far: post-translational regulation of peroxisome proliferator-activated receptors by ubiquitination and SUMOylation. Am J Phys 302:H515–H526

    CAS  Google Scholar 

  • Wai T, Langer T (2016) Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab 27:105–117

    Article  CAS  PubMed  Google Scholar 

  • Wang CY, She JX (2008) SUMO4 and its rote in type 1 diabetes pathogenesis. Diabetes Metab Res Rev 24:93–102

    Article  CAS  PubMed  Google Scholar 

  • Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, Ham J, Kang H, Evans RM (2004) Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol 2:e294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Chen L, Wen S, Zhu HP, Yu W, Moskowitz IP, Shaw GM, Finnell RH, Schwartz RJ (2011) Defective sumoylation pathway directs congenital heart disease. Birth Defects Res 91:468–476

    Article  CAS  Google Scholar 

  • Warburg O (1925) The metabolism of carcinoma cells. J Cancer Res Ther 9:148–163

    CAS  Google Scholar 

  • Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasiak S, Zunino R, McBride HM (2007) Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol 177:439–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterham HR, Koster J, van Roermund CW, Mooyer PA, Wanders RJ, Leonard JV (2007) A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med 56:1736–1741

    Article  Google Scholar 

  • Weber LW, Boll M, Stampfl A (2004) Maintaining cholesterol homeostasis: sterol regulatory element-binding proteins. World J Gastroenterol 10:3081–3087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson KA, Henley JM (2010) Mechanisms, regulation and consequences of protein SUMOylation. Biochem J 428:133–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woeller CF, Anderson DD, Szebenyi DME, Stover PJ (2007) Evidence for small ubiquitin-like modifier-dependent nuclear import of the thymidylate biosynthesis pathway. J Biol Chem 282:17623–17631

    Article  CAS  PubMed  Google Scholar 

  • Wong N, Ojo D, Yan J, Tang D (2015) PKM2 contributes to cancer metabolism. Cancer Lett 356:184–191

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Sun HY, Xiao FJ, Wang H, Yang Y, Wang L, Gao CJ, Guo ZK, Wu CT, Wang LS (2015) SENP1 inhibition induces apoptosis and growth arrest of multiple myeloma cells through modulation of NF-kappaB signaling. Biochem Biophys Res Commun 460:409–415

    Article  CAS  PubMed  Google Scholar 

  • Yamano K, Matsuda N, Tanaka K (2016) The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep 17:300–316

    Article  CAS  PubMed  Google Scholar 

  • Yamashita D, Yamaguchi T, Shimizu M, Nakata N, Hirose F, Osumi T (2004) The transactivating function of peroxisome proliferator-activated receptor gamma is negatively regulated by SUMO conjugation in the amino-terminal domain. Genes Cells 9:1017–1029

    Article  CAS  PubMed  Google Scholar 

  • Yan DY, Davis FJ, Sharrocks AD, Im HJ (2010) Emerging roles of SUMO modification in arthritis. Gene 466:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Paschen W (2015) SUMO proteomics to decipher the SUMO-modified proteome regulated by various diseases. Proteomics 15:1181–1191

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Sheng H, Homi HM, Warner DS, Paschen W (2008a) Cerebral ischemia stroke and small ubiquitin-like modifier (SUMO) conjugation - a new target for therapeutic intervention? J Neurochem 106:989–999

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Sheng H, Warner DS, Paschen W (2008b) Transient focal cerebral ischemia induces a dramatic activation of small ubiquitin-like modifier conjugation. J Cereb Blood Flow Metab 28:892–896

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Sheng HX, Warner DS, Paschen W (2008c) Transient global cerebral ischemia induces a massive increase in protein sumoylation. J Cereb Blood Flow Metab 28:269–279

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Thompson JW, Wang ZF, Wang LL, Sheng HX, Foster MW, Moseley MA, Paschen W (2012) Analysis of oxygen/glucose-deprivation-induced changes in SUMO3 conjugation using SILAC-based quantitative proteomics. J Proteome Res 11:1108–1117

    Article  CAS  PubMed  Google Scholar 

  • Yang P, Hu S, Yang F, Guan XQ, Wang SQ, Zhu P, Xiong F, Zhang S, Xu J, Yu QL, Wang CY (2014) Sumoylation modulates oxidative stress relevant to the viability and functionality of pancreatic beta cells. Am J Transl Res 6:353–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh ETH (2009) SUMOylation and de-SUMOylation: wrestling with life’s processes. J Biol Chem 284:8223–8227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokota K, Shibata H, Kurihara I, Kobayashi S, Suda N, Murai-Takeda A, Saito I, Kitagawa H, Kato S, Saruta T, Itoh H (2007) Coactivation of the N-terminal transactivation of mineralocorticoid receptor by Ubc9. J Biol Chem 282:1998–2010

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama C, Wang X, Briggs MR, Admon A, Wu J, Hua X, Goldstein JL, Brown MS (1993) SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell 75:187–197

    Article  CAS  PubMed  Google Scholar 

  • Zhang YQ, Sarge KD (2008) Sumoylation regulates lamin A function and is lost in lamin A mutants associated with familial cardiomyopathies. J Cell Biol 182:35–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Gan Z, Huang P, Zhou L, Mao T, Shao M, Jiang X, Chen Y, Ying H, Cao M, Li J, Li J, Zhang WJ, Yang L, Liu Y (2012) A role for protein inhibitor of activated STAT1 (PIAS1) in lipogenic regulation through SUMOylation-independent suppression of liver X receptors. J Biol Chem 287:37973–37985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong S, Muller S, Ronchetti S, Freemont PS, Dejean A, Pandolfi PP (2000) Role of SUMO-1-modified PML in nuclear body formation. Blood 95:2748–2753

    CAS  PubMed  Google Scholar 

  • Zhou W, Ryan JJ, Zhou H (2004) Global analyses of sumoylated proteins in Saccharomyces cerevisiae - induction of protein sumoylation by cellular stresses. J Biol Chem 279:32262–32268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zunino R, Schauss A, Rippstein P, Andrade-Navarro M, McBride HM (2007) The SUMO protease SENP5 is required to maintain mitochondrial morphology and function. J Cell Sci 120:1178–1188

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Stover .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kamynina, E., Stover, P.J. (2017). The Roles of SUMO in Metabolic Regulation. In: Wilson, V. (eds) SUMO Regulation of Cellular Processes. Advances in Experimental Medicine and Biology, vol 963. Springer, Cham. https://doi.org/10.1007/978-3-319-50044-7_9

Download citation

Publish with us

Policies and ethics