Skip to main content

Sumoylation in Development and Differentiation

  • Chapter
  • First Online:
SUMO Regulation of Cellular Processes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 963))

Abstract

Tissue morphogenesis is a fascinating aspect of both developmental biology and regeneration of certain adult organs, and timely control of cellular differentiation is a key to these processes. During development, events interrupting cellular differentiation and leading to organ failure are embryonic lethal; likewise, perturbation of differentiation in regenerating tissues leads to dysfunction and disease. At the molecular level, cellular differentiation is orchestrated by a well-coordinated cascade of transcription factors (TFs) and chromatin remodeling complexes that drive gene expression. Altering the localization, stability, or activity of these regulatory elements can affect the sequential organization of the gene expression program and result in failed or abnormal tissue development. An accumulating body of evidence shows that the sumoylation system is a critical modulator of these regulatory cascades. For example, inhibition of the sumoylation system during embryogenesis causes lethality and/or severe abnormalities from invertebrates to mammals. Mechanistically, it is now known that many of the TFs and components of chromatin remodeling complexes that are critical for development and differentiation are targets for SUMO modification, though the specific functional consequences of the modifications remain uncharacterized in many cases. This chapter will address several of the models systems that have been examined for the role of sumoylation in differentiation and development. Understanding the profound regulatory role of SUMO in different tissues should lead not only to a better understanding of developmental biology, stem cell linage control, and the mechanisms of cellular differentiation, but may also lead to the identification of new targets for drug therapy and/or therapeutic manipulation of damaged organs and tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alkuraya FS, Saadi I, Lund JJ, Turbe-Doan A, Morton CC, Maas RL (2006) SUMO1 haploinsufficiency leads to cleft lip and palate. Science 313:1751

    Article  PubMed  Google Scholar 

  • Andrade D, Velinder M, Singer J, Maese L, Bareyan D, Nguyen H, Chandrasekharan MB, Lucente H, McClellan D, Jones D, Sharma S, Liu F, Engel ME (2016) SUMOylation regulates growth factor independence 1 in transcriptional control and hematopoiesis. Mol Cell Biol 36:1438–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angel P, Szabowski A, Schorpp-Kistner M (2001) Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene 20:2413–2423

    Article  CAS  PubMed  Google Scholar 

  • Azuma Y, Arnaoutov A, Dasso M (2003) SUMO-2/3 regulates topoisomerase II in mitosis. J Cell Biol 163:477–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azuma Y, Arnaoutov A, Anan T, Dasso M (2005) PIASy mediates SUMO-2 conjugation of Topoisomerase-II on mitotic chromosomes. EMBO J 24:2172–2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachant J, Alcasabas A, Blat Y, Kleckner N, Elledge SJ (2002) The SUMO-1 isopeptidase Smt4 is linked to centromeric cohesion through SUMO-1 modification of DNA Topoisomerase II. Mol Cell 9:1169–1182

    Article  CAS  PubMed  Google Scholar 

  • Benbrook DM, Rogers RS, Medlin MA, Dunn ST (1995) Immunohistochemical analysis of proliferation and differentiation in organotypic cultures of cervical tumor cell lines. Tissue Cell 27:269–274

    Article  CAS  PubMed  Google Scholar 

  • Berkholz J, Michalick L, Munz B (2014) The E3 SUMO ligase Nse2 regulates sumoylation and nuclear-to-cytoplasmic translocation of skNAC-Smyd1 in myogenesis. J Cell Sci 127:3794–3804

    Article  CAS  PubMed  Google Scholar 

  • Betz A, Lampen N, Martinek S, Young MW, Darnell JE Jr (2001) A Drosophila PIAS homologue negatively regulates stat92E. Proc Natl Acad Sci U S A 98:9563–9568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beug H, Blundell PA, Graf T (1987) Reversibility of differentiation and proliferative capacity in avian myelomonocytic cells transformed by tsE26 leukemia virus. Genes Dev 1:277–286

    Article  CAS  PubMed  Google Scholar 

  • Broday L, Kolotuev I, Didier C, Bhoumik A, Gupta BP, Sternberg PW, Podbilewicz B, Ronai Z (2004) The small ubiquitin-like modifier (SUMO) is required for gonadal and uterine-vulval morphogenesis Caenorhabditis elegans. Genes Dev 18:2380–2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown PW, Hwang K, Schlegel PN, Morris PL (2008) Small ubiquitin-related modifier (SUMO)-1, SUMO-2/3 and SUMOylation are involved with centromeric heterochromatin of chromosomes 9 and 1 and proteins of the synaptonemal complex during meiosis in men. Hum Reprod 23:2850–2857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao HW, Hong CJ, Huang TN, Lin YL, Hsueh YP (2008) SUMOylation of the MAGUK protein CASK regulates dendritic spinogenesis. J Cell Biol 182:141–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu SY, Asai N, Costantini F, Hsu W (2008) SUMO-specific protease 2 Is essential for modulating p53-Mdm2 in development of trophoblast stem cell niches and lineages. PLoS Biol 6:2801–2816

    Article  CAS  Google Scholar 

  • Collavin L, Gostissa M, Avolio F, Secco P, Ronchi A, Santoro C, Del Sal G (2004) Modification of the erythroid transcription factor GATA-1 by SUMO-1. Proc Natl Acad Sci U S A 101:8870–8875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constanzo JD, Deng M, Rindhe S, Tang KJ, Zhang CC, Scaglioni PP (2016) Pias1 is essential for erythroid and vascular development in the mouse embryo. Dev Biol 415:98–110

    Article  CAS  PubMed  Google Scholar 

  • Demarque MD, Nacerddine K, Neyret-Kahn H, Andrieux A, Danenberg E, Jouvion G, Bomme P, Hamard G, Romagnolo B, Terris B, Cumano A, Barker N, Clevers H, Dejean A (2011) Sumoylation by Ubc9 regulates the stem cell compartment and structure and function of the intestinal epithelium in mice. Gastroenterol 140:286–296

    Article  CAS  Google Scholar 

  • Deyrieux AF, Rosas-Acosta G, Ozbun MA, Wilson VG (2007) Sumoylation dynamics during keratinocyte differentiation. J Cell Sci 120:125–136

    Article  CAS  PubMed  Google Scholar 

  • Driscoll JJ, Pelluru D, Lefkimmiatis K, Fulciniti M, Prabhala RH, Greipp PR, Barlogie B, Tai YT, Anderson KC, Shaughnessy JD, Annunziata CM, Munshi NC (2010) The sumoylation pathway is dysregulated in multiple myeloma and is associated with adverse patient outcome. Blood 115:2827–2834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du JX, McConnell BB, Yang VW (2010) A small ubiquitin-related modifier-interacting motif functions as the transcriptional activation domain of Kruppel-like factor 4. J Biol Chem 285:28298–28308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emambokus N, Vegiopoulos A, Harman B, Jenkinson E, Anderson G, Frampton J (2003) Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO J 22:4478–4488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Federzoni EA, Gloor S, Jin J, Shan-Krauer D, Fey MF, Torbett BE, Tschan MP (2015) Linking the SUMO protease SENP5 to neutrophil differentiation of AML cells. Leuk Res Rep 4:32–35

    PubMed  PubMed Central  Google Scholar 

  • Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408:325–330

    Article  CAS  PubMed  Google Scholar 

  • Gandarillas A (2000) Epidermal differentiation, apoptosis, and senescence: common pathways? Exp Gerontol 35:53–62

    Article  CAS  PubMed  Google Scholar 

  • Ghoreishi M (2000) Heat shock proteins in the pathogenesis of inflammatory skin diseases. J Med & Dent Sci 47:143–150

    CAS  Google Scholar 

  • Gocke CB, Yu HT, Kang JS (2005) Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates. J Biol Chem 280:5004–5012

    Article  CAS  PubMed  Google Scholar 

  • Gong L, Ji WK, Hu XH, Hu WF, Tang XC, Huang ZX, Li L, Liu M, Xiang SH, Wu E, Woodward Z, Liu YZ, Nguyen QD, Li DW (2014) Sumoylation differentially regulates Sp1 to control cell differentiation. Proc Natl Acad Sci U S A 111:5574–5579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregoire S, Tremblay AM, Xiao L, Yang Q, Ma KW, Nie JY, Mao ZX, Wu ZG, Giguere V, Yang XJ (2006) Control of MEF2 transcriptional activity by coordinated phosphorylation and sumoylation. J Biol Chem 281:4423–4433

    Article  CAS  PubMed  Google Scholar 

  • Gregoire S, Xiao L, Nie J, Zhang X, Xu M, Li J, Wong J, Seto E, Yang XJ (2007) Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Mol Cell Biol 27:1280–1295

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa Y, Yoshida D, Nakamura Y, Sakakibara S (2014) Spatiotemporal distribution of SUMOylation components during mouse brain development. J Comp Nneurol 522:3020–3036

    Article  CAS  Google Scholar 

  • Heaton PR, Santos A, Rosas-Acosta G, Wilson VG (2012) Analysis of global sumoylation changes occurring during keratinocyte differentiation. PLoS One 7:e30165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidenreich KA, Linseman DA (2004) Myocyte enhancer factor-2 transcription factors in neuronal differentiation and survival. Mol Neurobiol 29:155–166

    Article  CAS  PubMed  Google Scholar 

  • Hendriks IA, D'Souza RC, Yang B, Verlaan-de Vries M, Mann M, Vertegaal AC (2014) Uncovering global SUMOylation signaling networks in a site-specific manner. Nat Struct Mol Biol 21:927–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendriks IA, Treffers LW, Verlaan-de Vries M, Olsen JV, Vertegaal AC (2015) SUMO-2 orchestrates chromatin modifiers in response to DNA damage. Cell Rep 10:1778–1791

    Article  CAS  Google Scholar 

  • Huang L, Ohsako S, Tanda S (2005) The lesswright mutation activates Rel-related proteins, leading to overproduction of larval hemocytes in Drosophila melanogaster. Dev Biol 280:407–420

    Article  CAS  PubMed  Google Scholar 

  • Ihara M, Stein P, Schultz RM (2008) UBE2I (URC9), a SUMO-conjugating enzyme, localizes to nuclear speckles and stimulates transcription in mouse oocytes. Biol Reprod 79:906–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang M, Chiu SY, Hsu W (2011) SUMO-specific protease 2 in Mdm2-mediated regulation of p53. Cell Death Differ 18:1005–1015

    Article  CAS  PubMed  Google Scholar 

  • Jones D, Crowe E, Stevens TA, Candido EPM (2001) Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Genome Biol 3:2.1–2.15

    Article  Google Scholar 

  • Jones D, Crowe E, Stevens TA, Candido EP (2002) Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Genome Biol 3:0002.0001–0002.0015

    Google Scholar 

  • Juarez-Vicente F, Luna-Pelaez N, Garcia-Dominguez M (2016) The SUMO protease SENP7 is required for proper neuronal differentiation. Biochim Biophys Acta 1863:1490–1498

    Article  CAS  PubMed  Google Scholar 

  • Kagey MH, Melhuish TA, Wotton D (2003) The polycomb protein Pc2 is a SUMO E3. Cell 113:127–137

    Article  CAS  PubMed  Google Scholar 

  • Kanakousaki K, Gibson MC (2012) A differential requirement for SUMOylation in proliferating and non-proliferating cells during Drosophila development. Development 139:2751–2762

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Gocke CB, Yu H (2006) Phosphorylation-facilitated sumoylation of MEF2C negatively regulates its transcriptional activity. BMC Biochem 7:1–14

    Article  CAS  Google Scholar 

  • Kang XL, Qi YT, Zuo Y, Wang Q, Zou YQ, Schwartz RJ, Cheng JK, Yeh ETH (2010) SUMO-specific protease 2 Is essential for suppression of polycomb group protein-mediated gene silencing during embryonic development. Mol Cell 38:191–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KI, Baek SH, Jeon YJ, Nishimori S, Suzuki T, Uchida S, Shimbara N, Saitoh H, Tanaka K, Chung CH (2000) A new SUMO-1-specific protease, SUSP1, that is highly expressed in reproductive organs. J Biol Chem 275:14102–14106

    Article  CAS  PubMed  Google Scholar 

  • Koster MI, Huntzinger KA, Roop DR (2002) Epidermal differentiation: transgenic/knockout mouse models reveal genes involved in stem cell fate decisions and commitment to differentiation. J Invest Dermatol 7:41–45

    Article  CAS  Google Scholar 

  • Kuijk EW, Du Puy L, Van Tol HT, Oei CH, Haagsman HP, Colenbrander B, Roelen BA (2008) Differences in early lineage segregation between mammals. Dev Dyn 237:918–927

    Article  CAS  PubMed  Google Scholar 

  • La Salle S, Sun F, Zhang XD, Matunis MJ, Handel MA (2008) Developmental control of sumoylation pathway proteins in mouse male germ cells. Dev Biol 321:227–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HY, Johnson KD, Fujiwara T, Boyer ME, Kim SI, Bresnick EH (2009) Controlling hematopoiesis through sumoylation-dependent regulation of a GATA factor. Mol Cell 36:984–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leight ER, Glossip D, Kornfeld K (2005) Sumoylation of LIN-1 promotes transcriptional repression and inhibition of vulval cell fates. Development 132:1047–1056

    Article  CAS  PubMed  Google Scholar 

  • Li SS, Liu YH, Tseng CN, Singh S (2006) Analysis of gene expression in single human oocytes and preimplantation embryos. Biochem Biophys Res Commun 340:48–53

    Article  CAS  PubMed  Google Scholar 

  • Li D, Niu Z, Yu W, Qian Y, Wang Q, Li Q, Yi Z, Luo J, Wu X, Wang Y, Schwartz RJ, Liu M (2009) SMYD1, the myogenic activator, is a direct target of serum response factor and myogenin. Nucleic Acids Res 37:7059–7071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Lan Y, Xu J, Zhang W, Wen Z (2012) SUMO1-activating enzyme subunit 1 is essential for the survival of hematopoietic stem/progenitor cells in zebrafish. Development 139:4321–4329

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Yee KM, Tahk S, Mackie R, Hsu C, Shuai K (2014) PIAS1 SUMO ligase regulates the self-renewal and differentiation of hematopoietic stem cells. EMBO J 33:101–113

    Article  PubMed  CAS  Google Scholar 

  • Looijenga LH, Stoop H, de Leeuw HP, de Gouveia Brazao CA, Gillis AJ, van Roozendaal KE, van Zoelen EJ, Weber RF, Wolffenbuttel KP, van Dekken H, Honecker F, Bokemeyer C, Perlman EJ, Schneider DT, Kononen J, Sauter G, Oosterhuis JW (2003) POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Res 63:2244–2250

    CAS  PubMed  Google Scholar 

  • Loriol C, Parisot J, Poupon G, Gwizdek C, Martin S (2012) Developmental regulation and spatiotemporal redistribution of the sumoylation machinery in the rat central nervous system. PLoS One 7:e33757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, McKinsey TA, Nicol RL, Olson EN (2000) Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci U S A 97:4070–4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luan Z, Liu Y, Stuhlmiller TJ, Marquez J, Garcia-Castro MI (2013) SUMOylation of Pax7 is essential for neural crest and muscle development. Cell Mol Life Sci 70:1793–1806

    Article  CAS  PubMed  Google Scholar 

  • Luis NM, Morey L, Mejetta S, Pascual G, Janich P, Kuebler B, Cozutto L, Roma G, Nascimento E, Frye M, Di Croce L, Benitah SA (2011) Regulation of human epidermal stem cell proliferation and senescence requires polycomb- dependent and -independent functions of Cbx4. Cell Stem Cell 9:233–246

    Article  CAS  PubMed  Google Scholar 

  • Mardaryev AN, Liu B, Rapisarda V, Poterlowicz K, Malashchuk I, Rudolf J, Sharov AA, Jahoda CA, Fessing MY, Benitah SA, Xu GL, Botchkarev VA (2016) Cbx4 maintains the epithelial lineage identity and cell proliferation in the developing stratified epithelium. J Cell Biol 212:77–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama EO, Lin H, Chiu SY, Yu HM, Porter GA, Hsu W (2016) Extraembryonic but not embryonic SUMO-specific protease 2 is required for heart development. Sci Rep 6:20999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKinsey TA, Zhang CL, Olson EN (2002) MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 27:40–47

    Article  CAS  PubMed  Google Scholar 

  • Metzler-Guillemain C, Depetris D, Luciani JJ, Mignon-Ravix C, Mitchell MJ, Mattei MG (2008) In human pachytene spermatocytes, SUMO protein is restricted to the constitutive heterochromatin. Chromosom Res 16:761–782

    Article  CAS  Google Scholar 

  • Morita Y, Kanei-Ishii C, Nomura T, Ishii S (2005) TRAF7 sequesters c-Myb to the cytoplasm by stimulating its sumoylation. Mol Biol Cell 16:5433–5444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nacerddine K, Lehembre F, Bhaumik M, Artus J, Cohen-Tannoudji M, Babinet C, Pandolfi PP, Dejean A (2005) The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell 9:769–779

    Article  CAS  PubMed  Google Scholar 

  • Nayak A, Viale-Bouroncle S, Morsczeck C, Muller S (2014) The SUMO-specific isopeptidase SENP3 regulates MLL1/MLL2 methyltransferase complexes and controls osteogenic differentiation. Mol Cell 55:47–58

    Article  CAS  PubMed  Google Scholar 

  • Newman AP, Acton GZ, Hartwieg E, Horvitz HR, Sternberg PW (1999) The lin-11 LIM domain transcription factor is necessary for morphogenesis of C. elegans uterine cells. Development 126:5319–5326

    CAS  PubMed  Google Scholar 

  • Nie MH, Xie YM, Loo JA, Courey AJ (2009) Genetic and proteomic evidence for roles of Drosophila SUMO in cell cycle control, Ras signaling, and early pattern formation. PLoS One 4:e5905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24:372–376

    Article  CAS  PubMed  Google Scholar 

  • Nowak M, Hammerschmidt M (2006) Ubc9 regulates mitosis and cell survival during zebrafish development. Mol Biol Cell 17:5324–5336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potts PR, Yu HT (2005) Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol Cell Biol 25:7021–7032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poumay Y, Leclercq-Smekens M (1998) In vitro models of epidermal differentiation. Folia Med 40:5–12

    CAS  Google Scholar 

  • Pownall ME, Gustafsson MK, Emerson CP Jr (2002) Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu Rev Cell Dev Biol 18:747–783

    Article  CAS  PubMed  Google Scholar 

  • Riquelme C, Barthel KK, Qin XF, Liu X (2006a) Ubc9 expression is essential for myotube formation in C2C12. Exp Cell Res 312:2132–2141

    Article  CAS  PubMed  Google Scholar 

  • Riquelme C, Barthel KKB, Liu XD (2006b) SUMO-1 modification of MEF2A regulates its transcriptional activity. J Cell Mol Med 10:132–144

    Article  CAS  PubMed  Google Scholar 

  • Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, Robson P (2005) Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 280:24731–24737

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez A, Pangas SA (2016) Regulation of germ cell function by SUMOylation. Cell Tissue Res 363:47–55

    Article  CAS  PubMed  Google Scholar 

  • Rogers RS, Inselman A, Handel MA, Matunis MJ (2004) SUMO modified proteins localize to the XY body of pachytene spermatocytes. Chromosoma 113:233–243

    Article  PubMed  Google Scholar 

  • Rytinki MM, Lakso M, Pehkonen P, Aarnio V, Reisner K, Perakyla M, Wong G, Palvimo JJ (2011) Overexpression of SUMO perturbs the growth and development of Caenorhabditis elegans. Cell Mol Life Sci 68:3219–3232

    Article  CAS  PubMed  Google Scholar 

  • Santti H, Mikkonen L, Hirvonen-Santti S, Toppari J, Janne OA, Palvimo JJ (2003) Identification of a short PIASx gene promoter that directs male germ cell-specific transcription in vivo. Biochem Biophys Res Commun 308:139–147

    Article  CAS  PubMed  Google Scholar 

  • Sayed N, Liu C, Wu JC (2016) Translation of human-induced pluripotent stem cells: from clinical trial in a dish to precision medicine. J AmColl Cardiol 67:2161–2176

    Article  Google Scholar 

  • Shalizi A, Gaudilliere B, Yuan ZQ, Stegmuller J, Shirogane T, Ge QY, Tan Y, Schulman B, Harper JW, Bonni A (2006) A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science 311:1012–1017

    Article  CAS  PubMed  Google Scholar 

  • Shalizi A, Bilimoria PM, Stegmuller J, Gaudilliere B, Yang Y, Shuai K, Bonni A (2007) PIASx is a MEF2 SUMO E3 ligase that promotes postsynaptic dendritic morphogenesis. J Neurosci 27:10037–10046

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Yamada S, Lualdi M, Dasso M, Kuehn MR (2013) SENP1 is essential for desumoylating SUMO1-modified proteins but dispensable for SUMO2 and SUMO3 deconjugation in the mouse embryo. Cell Rep 3:1640–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrivastava V, Pekar M, Grosser E, Im J, Vigodner M (2010) SUMO proteins are involved in the stress response during spermatogenesis and are localized to DNA double-strand breaks in germ cells. Reproduction 139:999–1010

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava V, Marmor H, Chernyak S, Goldstein M, Feliciano M, Vigodner M (2014) Cigarette smoke affects posttranslational modifications and inhibits capacitation-induced changes in human sperm proteins. Reprod Toxicol 43:125–129

    Article  CAS  PubMed  Google Scholar 

  • Smith M, Turki-Judeh W, Courey AJ (2012) SUMOylation in Drosophila development. Biomolecules 2:331–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahmasebi S, Ghorbani M, Savage P, Gocevski G, Yang XJ (2014) The SUMO conjugating enzyme Ubc9 is required for inducing and maintaining stem cell pluripotency. Stem Cells 32:1012–1020

    Article  CAS  PubMed  Google Scholar 

  • Tapscott SJ (2005) The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development 132:2685–2695

    Article  CAS  PubMed  Google Scholar 

  • Tillmanns S, Otto C, Jaffray E, Du Roure C, Bakri Y, Vanhille L, Sarrazin S, Hay RT, Sieweke MH (2007) SUMO modification regulates MafB-driven macrophage differentiation by enabling Myb-dependent transcriptional repression. Mol Cell Biol 27:5554–5564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuruzoe S, Ishihara K, Uchimura Y, Watanabe S, Sekita Y, Aoto T, Saitoh H, Yuasa Y, Niwa H, Kawasuji M, Baba H, Nakao M (2006) Inhibition of DNA binding of Sox2 by the SUMO conjugation. Biochem Biophys Res Commun 351:920–926

    Article  CAS  PubMed  Google Scholar 

  • van der Meer LT, Jansen JH, van der Reijden BA (2010) Gfi1 and Gfi1b: key regulators of hematopoiesis. Leukemia 24:1834–1843

    Article  PubMed  CAS  Google Scholar 

  • Van Nguyen T, Angkasekwinai P, Dou H, Lin FM, Lu LS, Cheng J, Chin YE, Dong C, Yeh ET (2012) SUMO-specific protease 1 is critical for early lymphoid development through regulation of STAT5 activation. Mol Cell 45:210–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vigodner M (2009) Sumoylation precedes accumulation of phosphorylated H2AX on sex chromosomes during their meiotic inactivation. Chromosom Res 17:37–45

    Article  CAS  Google Scholar 

  • Vigodner M (2011) Roles of small ubiquitin-related modifiers in male reproductive function. Int Rev Cell Mol Biol 288:227–259

    Article  CAS  PubMed  Google Scholar 

  • Vigodner M, Morris PL (2005) Testicular expression of small ubiquitin-related modifier-1 (SUMO-1) supports multiple roles in spermatogenesis: silencing of sex chromosomes in spermatocytes, spermatid microtubule nucleation, and nuclear reshaping. Dev Biol 282:480–492

    Article  CAS  PubMed  Google Scholar 

  • Vigodner M, Ishikawa T, Schlegel PN, Morris PL (2006) SUMO-1, human male germ cell development, and the androgen receptor in the testis of men with normal and abnormal spermatogenesis. Am J Physiol-Endocrinol Metab 290:E1022–E1033

    Article  CAS  PubMed  Google Scholar 

  • Vigodner M, Shrivastava V, Gutstein LE, Schneider J, Nieves E, Goldstein M, Feliciano M, Callaway M (2013) Localization and identification of sumoylated proteins in human sperm: excessive sumoylation is a marker of defective spermatozoa. Hum Reprod 28:210–223

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Ema H (2016) Mechanisms of self-renewal in hematopoietic stem cells. Int J Hematol 103:498–509

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhou Q (2016) Derivation and application of pluripotent stem cells for regenerative medicine. Sci China Life Sci 59:576–583

    Article  CAS  PubMed  Google Scholar 

  • Wang YG, Mukhopadhyay D, Mathew S, Hasebe T, Heimeier RA, Azuma Y, Kolli N, Shi YB, Wilkinson KD, Dasso M (2009) Identification and developmental expression of Xenopus laevis SUMO proteases. PLoS One 4:e8462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang ZB, Ou XH, Tong JS, Li S, Wei LA, Ouyang YC, Hou Y, Schatten H, Sun QY (2010) The SUMO pathway functions in mouse oocyte maturation. Cell Cycle 9:2640–2646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Shankar SR, Kher D, Ling BM, Taneja R (2013) Sumoylation of the basic helix-loop-helix transcription factor Sharp-1 regulates recruitment of the histone methyltransferase G9a and function in myogenesis. J Biol Chem 288:17654–17662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wansleeben C, Zhao S, Miao P, Paschen W, Yang W (2014) SUMO2 is essential while SUMO3 is dispensable for mouse embryonic development. EMBO Rep 15:878–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward JD, Bojanala N, Bernal T, Ashrafi K, Asahina M, Yamamoto KR (2013) Sumoylated NHR-25/NR5A regulates cell fate during C. elegans vulval development. PLoS Genet 9:e1003992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei F, Scholer HR, Atchison ML (2007) Sumoylation of Oct4 enhances its stability, DNA binding, and transactivation. J Biol Chem 282:21551–21560

    Article  CAS  PubMed  Google Scholar 

  • Werner S, Smola H (2001) Paracrine regulation of keratinocyte proliferation and differentiation. Trends Cell Biol 4:143–146

    Article  Google Scholar 

  • Wotton D, Merrill JC (2007) Pc2 and SUMOylation. Biochem Soc Trans 35:1401–1404

    Article  CAS  PubMed  Google Scholar 

  • Wrighton KH, Liang M, Bryan B, Luo K, Liu M, Feng XH, Lin X (2007) Transforming growth factor-beta-independent regulation of myogenesis by SnoN sumoylation. J Biol Chem 282:6517–6524

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Guo Z, Wu H, Wang X, Yang L, Shi X, Du J, Tang B, Li W, Yang L, Zhang Y (2012) SUMOylation represses Nanog expression via modulating transcription factors Oct4 and Sox2. PLoS One 7:e39606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Z, Chang JG, Hendriks IA, Sigurethsson JO, Olsen JV, Vertegaal AC (2015) System-wide analysis of SUMOylation dynamics in response to replication stress reveals novel small ubiquitin-like modified target proteins and acceptor lysines relevant for genome stability. Mol Cell Proteomics 14:1419–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Pollack D, Andrusier M, Levy A, Callaway M, Nieves E, Reddi P, Vigodner M (2016) Identification of cell-specific targets of sumoylation during mouse spermatogenesis. Reproduction 151:149–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan W, Santti H, Janne OA, Palvimo JJ, Toppari J (2003) Expression of the E3 SUMO-1 ligases PIASx and PIAS1 during spermatogenesis in the rat. Gene Expr Patterns 3:301–308

    Article  CAS  PubMed  Google Scholar 

  • Yao Z, Cui Y, Watford WT, Bream JH, Yamaoka K, Hissong BD, Li D, Durum SK, Jiang Q, Bhandoola A, Hennighausen L, O’Shea JJ (2006) Stat5a/b are essential for normal lymphoid development and differentiation. Proc Natl Acad Sci U S A 103:1000–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu B, Shao Y, Zhang C, Chen YW, Zhong QL, Zhang J, Yang H, Zhang W, Wan J (2009) BS69 undergoes SUMO modification and plays an inhibitory role in muscle and neuronal differentiation. Exp Cell Res 315:3543–3553

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Zhou J, Deng M, Liu X, Le Bras M, de The H, Chen SJ, Chen Z, Liu TX, Zhu J (2010) Small ubiquitin-related modifier paralogs are indispensable but functionally redundant during early development of zebrafish. Cell Res 20:185–196

    Article  CAS  PubMed  Google Scholar 

  • Yuan YF, Zhai R, Liu XM, Khan HA, Zhen YH, Huo LJ (2014) SUMO-1 plays crucial roles for spindle organization, chromosome congression, and chromosome segregation during mouse oocyte meiotic maturation. Mol Reprod Dev 81:712–724

    CAS  PubMed  Google Scholar 

  • Yuan H, Zhang T, Liu X, Deng M, Zhang W, Wen Z, Chen S, Chen Z, de The H, Zhou J, Zhu J (2015) Sumoylation of CCAAT/enhancer-binding protein alpha is implicated in hematopoietic stem/progenitor cell development through regulating runx1 in zebrafish. Sci Rep 5:9011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yukita A, Michiue T, Danno H, Asashima M (2007) XSUMO-1 is required for normal mesoderm induction and axis elongation during early Xenopus development. Dev Dyn 236:2757–2766

    Article  CAS  PubMed  Google Scholar 

  • Zhang FP, Mikkonen L, Toppari J, Palvimo JJ, Thesleff I, Janne OA (2008) SUMO-1 function is dispensable in normal mouse development. Mol Cell Biol 28:5381–5390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van G. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Deyrieux, A.F., Wilson, V.G. (2017). Sumoylation in Development and Differentiation. In: Wilson, V. (eds) SUMO Regulation of Cellular Processes. Advances in Experimental Medicine and Biology, vol 963. Springer, Cham. https://doi.org/10.1007/978-3-319-50044-7_12

Download citation

Publish with us

Policies and ethics