Skip to main content

Introduction to Sumoylation

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 963))

Abstract

Reversible post-translational modification is a rapid and efficient system to control the activity of pre-existing proteins. Modifiers range from small chemical moieties, such as phosphate groups, to proteins themselves as the modifier. The patriarch of the protein modifiers is ubiquitin which plays a central role in protein degradation and protein targeting. Over the last 20 years, the ubiquitin family has expanded to include a variety of ubiquitin-related small modifier proteins that are all covalently attached to a lysine residue on target proteins via series of enzymatic reactions. Of these more recently discovered ubiquitin-like proteins, the SUMO family has gained prominence as a major regulatory component that impacts numerous aspects of cell growth, differentiation, and response to stress. Unlike ubiquitinylation which often leads to proteins turn over, sumoylation performs a variety of function such as altering protein stability, modulating protein trafficking, directing protein-protein interactions, and regulating protein activity. This chapter will introduce the basic properties of SUMO proteins and the general tenets of sumoylation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ayaydin F, Dasso M (2004) Distinct in vivo dynamics of vertebrate SUMO paralogues. Mol Biol Cell 15:5208–5218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayer P, Arndt A, Metzger S, Mahajan R, Melchior F, Jaenicke R, Becker J (1998) Structure determination of the small ubiquitin-related modifier SUMO-1. J Mol Biol 280:275–286

    Article  CAS  PubMed  Google Scholar 

  • Boddy MN, Howe K, Etkin LD, Solomon E, Freemont PS (1996) PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene 13:971–982

    CAS  PubMed  Google Scholar 

  • Bohren KM, Nadkarni V, Song JH, Gabbay KH, Owerbach D (2004) A M55 V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J Biol Chem 279:27233–27238

    Article  CAS  PubMed  Google Scholar 

  • Bueno MT, Richard S (2013) SUMOylation negatively modulates target gene occupancy of the KDM5B, a histone lysine demethylase. Epigenetics 8:1162–1175

    Article  CAS  PubMed  Google Scholar 

  • Castro PH, Tavares RM, Bejarano ER, Azevedo H (2012) SUMO, a heavyweight player in plant abiotic stress responses. Cell Mol Life Sci 69:3269–3283

    Article  CAS  PubMed  Google Scholar 

  • Chang CC, Naik MT, Huang YS, Jeng JC, Liao PH, Kuo HY, Ho CC, Hsieh YL, Lin CH, Huang NJ, Naik NM, Kung CCH, Lin SY, Chen RH, Chang KS, Huang TH, Shih HM (2011) Structural and functional roles of Daxx SIM phosphorylation in SUMO paralog-selective binding and apoptosis modulation. Mol Cell 42:62–74

    Article  CAS  PubMed  Google Scholar 

  • Chen A, Mannen H, Li SS (1998) Characterization of mouse ubiquitin-like SMT3A and SMT3B cDNAs and gene/pseudogenes. Biochem Mol Biol Int 46:1161–1174

    CAS  PubMed  Google Scholar 

  • Chung TL, Hsiao HH, Yeh YY, Shia HL, Chen YL, Liang PH, Wang AHJ, Khoo KH, Li SSL (2004) In vitro modification of human centromere protein CENP-C fragments by small ubiquitin-like modifier (SUMO) protein – definitive identification of the modification sites by tandem mass spectrometry analysis of the isopeptides. J Biol Chem 279:39653–39662

    Article  CAS  PubMed  Google Scholar 

  • Chymkowitch P, Nguea AP, Aanes H, Koehler CJ, Thiede B, Lorenz S, Meza-Zepeda LA, Klungland A, Enserink JM (2015) Sumoylation of Rap1 mediates the recruitment of TFIID to promote transcription of ribosomal protein genes. Genome Res 25:897–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Citro S, Chiocca S (2013) SUMO paralogs: redundancy and divergencies. Front Biosci 5:544–553

    Article  Google Scholar 

  • Cubenas-Potts C, Matunis MJ (2013) SUMO: a multifaceted modifier of chromatin structure and function. Dev Cell 24:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de la Vega L, Grishina I, Moreno R, Kruger M, Braun T, Schmitz ML (2012) A redox-regulated SUMO/acetylation switch of HIPK2 controls the survival threshold to oxidative stress. Mol Cell 46:472–483

    Article  PubMed  CAS  Google Scholar 

  • Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434

    Article  CAS  PubMed  Google Scholar 

  • Desterro JM, Rodriguez MS, Hay RT (1998) SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2:233–239

    Article  CAS  PubMed  Google Scholar 

  • Deyrieux AF, Rosas-Acosta G, Ozbun MA, Wilson VG (2007) Sumoylation dynamics during keratinocyte differentiation. J Cell Sci 120:125–136

    Article  CAS  PubMed  Google Scholar 

  • Dhall A, Wei S, Fierz B, Woodcock CL, Lee TH, Chatterjee C (2014) Sumoylated human histone H4 prevents chromatin compaction by inhibiting long-range internucleosomal interactions. J Biol Chem 289:33827–33837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Bacco A, Ouyang J, Lee HY, Catic A, Ploegh H, Gill G (2006) The SUMO-specific protease SENP5 is required for cell division. Mol Cell Biol 26:4489–4498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding HS, Xu YQ, Chen Q, Dai HM, Tang YJ, Wu JH, Shi YY (2005) Solution structure of human SUMO-3 C47S and its binding surface for Ubc9. Biochemist 44:2790–2799

    Article  CAS  Google Scholar 

  • Drag M, Mikolajczyk J, Krishnakumar IM, Huang ZW, Salvesen GS (2008) Activity profiling of human deSUMOylating enzymes (SENPs) with synthetic substrates suggests an unexpected specificity of two newly characterized members of the family. Biochem J 409:461–469

    Article  CAS  PubMed  Google Scholar 

  • Eifler K, Vertegaal AC (2015) Mapping the SUMOylated landscape. FEBS J 282:3669–3680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eladad S, Ye TZ, Hu P, Leversha M, Beresten S, Matunis MJ, Ellis NA (2005) Intra-nuclear trafficking of the BLM helicase to DNA damage-induced foci is regulated by SUMO modification. Hum Mol Genet 14:1351–1365

    Article  CAS  PubMed  Google Scholar 

  • Erker Y, Neyret-Kahn H, Seeler JS, Dejean A, Atfi A, Levy L (2013) Arkadia, a novel SUMO-targeted ubiquitin ligase involved in PML degradation. Mol Cell Biol 33:2163–2177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escobar-Ramirez A, Vercoutter-Edouart AS, Mortuaire M, Huvent I, Hardiville S, Hoedt E, Lefebvre T, Pierce A (2015) Modification by SUMOylation controls both the transcriptional activity and the stability of delta-lactoferrin. PLoS One 10:e0129965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evdokimov E, Sharma P, Lockett SJ, Lualdi M, Kuehn MR (2008) Loss of SUMO1 in mice affects RanGAP1 localization and formation of PML nuclear bodies, but is not lethal as it can be compensated by SUMO2 or SUMO3. J Cell Sci 121:4106–4113

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Dominguez M, Reyes JC (2009) SUMO association with repressor complexes, emerging routes for transcriptional control. Biochim Biophys Acta 1789:451–459

    Article  CAS  PubMed  Google Scholar 

  • Gareau JR, Lima CD (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 11:861–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill G (2005) Something about SUMO inhibits transcription. Curr Opin Genet Dev 15:536–541

    Article  CAS  PubMed  Google Scholar 

  • Girdwood D, Bumpass D, Vaughan OA, Thain A, Anderson LA, Snowden AW, Garcia-Wilson E, Perkins ND, Hay RT (2003) p300 transcriptional repression is mediated by SUMO modification. Mol Cell 11:1043–1054

    Article  CAS  PubMed  Google Scholar 

  • Gong L, Yeh ETH (2006) Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J Biol Chem 281:15869–15877

    Article  CAS  PubMed  Google Scholar 

  • Gong LM, Millas S, Maul GG, Yeh ETH (2000) Differential regulation of sentrinized proteins by a novel sentrin-specific protease. J Biol Chem 275:3355–3359

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Prieto R, Cuijpers SA, Kumar R, Hendriks IA, Vertegaal AC (2015) c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4. Cell Cycle 14:1859–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodson ML, Hong Y, Rogers R, Matunis MJ, Park-Sarge OK, Sarge KD (2001) SUMO-1 modification regulates the DNA binding activity of heat shock transcription factor 2, a promyelocytic leukemia nuclear body associated transcription factor. J Biol Chem 276:18513–18518

    Article  CAS  PubMed  Google Scholar 

  • Hang J, Dasso M (2002) Association of the human SUMO-1 protease SENP2 with the nuclear pore. J Biol Chem 277:19961–19966

    Article  CAS  PubMed  Google Scholar 

  • Hay RT (2005) SUMO: a history of modification. Mol Cell 18:1–12

    Article  CAS  PubMed  Google Scholar 

  • Hecker CM, Rabiller M, Haglund K, Bayer P, Dikic I (2006) Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 281:16117–16127

    Article  CAS  PubMed  Google Scholar 

  • Hendriks IA, D’Souza RC, Yang B, Verlaan-de Vries M, Mann M, Vertegaal AC (2014) Uncovering global SUMOylation signaling networks in a site-specific manner. Nat Struct Mol Biol 21:927–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendriks IA, D’Souza RC, Chang JG, Mann M, Vertegaal AC (2015a) System-wide identification of wild-type SUMO-2 conjugation sites. Nat Commun 6:7289

    Article  PubMed  PubMed Central  Google Scholar 

  • Hendriks IA, Treffers LW, Verlaan-de Vries M, Olsen JV, Vertegaal AC (2015b) SUMO-2 orchestrates chromatin modifiers in response to DNA damage. Cell Rep 10:1778–1791

    Article  CAS  Google Scholar 

  • Hietakangas V, Anckar J, Blomster HA, Fujimoto M, Palvimo JJ, Nakai A, Sistonen L (2006) PDSM, a motif for phosphorylation-dependent SUMO modification. Proc Natl Acad Sci USA 103:45–50

    Article  CAS  PubMed  Google Scholar 

  • Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141

    Article  CAS  PubMed  Google Scholar 

  • Hong YL, Rogers R, Matunis MJ, Mayhew CN, Goodson M, Park-Sarge OK, Sarge KD (2001) Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. J Biol Chem 276:40263–40267

    Article  CAS  PubMed  Google Scholar 

  • Huang WC, Ko TP, Li SSL, Wang AHJ (2004) Crystal structures of the human SUMO-2 protein at 1.6 angstrom and 1.2 angstrom resolution – implication on the functional differences of SUMO proteins. Eur J Biochem 271:4114–4122

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Cheng J, Bawa-Khalfe T, Yao X, Chin YE, Yeh ET (2016) SUMOylated ORC2 recruits a histone demethylase to regulate centromeric histone modification and genomic stability. Cell Rep 15:147–157

    Article  CAS  PubMed  Google Scholar 

  • Ihara M, Koyama H, Uchimura Y, Saitoh H, Kikuchi A (2007) Noncovalent binding of small ubiquitin-related modifier (SUMO) protease to SUMO is necessary for enzymatic activities and cell growth. J Biol Chem 282:16465–16475

    Article  CAS  PubMed  Google Scholar 

  • Jentsch S, Psakhye I (2013) Control of nuclear activities by substrate-selective and protein-group SUMOylation. Annu Rev Genet 47:167–186

    Article  CAS  PubMed  Google Scholar 

  • Johnson ES, Gupta AA (2001) An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106:735–744

    Article  CAS  PubMed  Google Scholar 

  • Johnson ES, Schwienhorst I, Dohmen RJ, Blobel G (1997) The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J 16:5509–5519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones D, Crowe E, Stevens TA, Candido EP (2002) Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Genome Biol 3:0002.1–0002.15

    Google Scholar 

  • Kagey MH, Melhuish TA, Wotton D (2003) The polycomb protein Pc2 is a SUMO E3. Cell 113:127–137

    Article  CAS  PubMed  Google Scholar 

  • Kamitani T, Kito K, Nguyen HP, Fukuda-Kamitani T, Yeh ET (1998a) Characterization of a second member of the sentrin family of ubiquitin-like proteins. J Biol Chem 273:11349–11353

    Article  CAS  PubMed  Google Scholar 

  • Kamitani T, Kito K, Nguyen HP, Wada H, Fukuda-Kamitani T, Yeh ET (1998b) Identification of three major sentrinization sites in PML. J Biol Chem 273:26675–26682

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Choi CY, Kim Y (1999) Covalent modification of the homeodomain-interacting protein kinase 2 (HIPK2) by the ubiquitin-like protein SUMO-1. Proc Natl Acad Sci U S A 96:12350–12355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klenk C, Humrich J, Quitterer U, Lohse MJ (2006) SUMO-1 controls the protein stability and the biological function of phosducin. J Biol Chem 281:8357–8364

    Article  CAS  PubMed  Google Scholar 

  • Kurepa J, Walker JM, Smalle J, Gosink MM, Davis SJ, Durham TL, Sung DY, Vierstra RD (2003) The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis – accumulation of SUMO1 and −2 conjugates is increased by stress. J Biol Chem 278:6862–6872

    Article  CAS  PubMed  Google Scholar 

  • Lee B, Muller MT (2009) SUMOylation enhances DNA methyltransferase 1 activity. Biochem J 421:449–461

    Article  CAS  PubMed  Google Scholar 

  • Lehembre F, Badenhorst P, Muller S, Travers A, Schweisguth F, Dejean A (2000) Covalent modification of the transcriptional repressor tramtrack by the ubiquitin-related protein Smt3 in Drosophila flies. Mol Cell Biol 20:1072–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewicki MC, Srikumar T, Johnson E, Raught B (2015) The S. cerevisiae SUMO stress response is a conjugation-deconjugation cycle that targets the transcription machinery. J Proteomics 118:39–48

    Article  CAS  PubMed  Google Scholar 

  • Li SJ, Hochstrasser M (1999) A new protease required for cell-cycle progression in yeast. Nature 398:246–251

    Article  CAS  PubMed  Google Scholar 

  • Lima CD, Reverter D (2008) Structure of the human SENP7 catalytic domain and poly-SUMO deconjugation activities for SENP6 and SENP7. J Biol Chem 283:32045–32055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lois LM, Lima CD (2005) Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J 24:439–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long JY, Wang GN, He DM, Liu F (2004) Repression of Smad4 transcriptional activity by SUMO modification. Biochem J 379:23–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manza LL, Codreanu SG, Stamer SL, Smith DL, Wells KS, Roberts RL, Liebler DC (2004) Global shifts in protein sumoylation in response to electrophile and oxidative stress. Chem Res Toxicol 17:1706–1715

    Article  CAS  PubMed  Google Scholar 

  • Matic I, Macek B, Hilger M, Walther TC, Mann M (2008) Phosphorylation of SUMO-1 occurs in vivo and is conserved through evolution. J Proteome Res 7:4050–4057

    Article  CAS  PubMed  Google Scholar 

  • Matic I, Schimmel J, Hendriks IA, van Santen MA, van de Rijke F, van Dam H, Gnad F, Mann M, Vertegaal ACO (2010) Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. Mol Cell 39:641–652

    Article  CAS  PubMed  Google Scholar 

  • Matunis MJ, Coutavas E, Blobel G (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135:1457–1470

    Article  CAS  PubMed  Google Scholar 

  • Melchior F (2000) SUMO – nonclassical ubiquitin. Annu Rev Cell Dev Biol 16:591–626

    Article  CAS  PubMed  Google Scholar 

  • Meulmeester E, Kunze M, Hsiao HH, Urlaub H, Melchior F (2008) Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Mol Cell 30:610–619

    Article  CAS  PubMed  Google Scholar 

  • Mikolajczyk J, Drag M, Bekes M, Cao JT, Ronai Z, Salvesen GS (2007) Small ubiquitin-related modifier (SUMO)-specific proteases – profiling the specificities and activities of human SENPs. J Biol Chem 282:26217–26224

    Article  CAS  PubMed  Google Scholar 

  • Namanja AT, Li YJ, Su Y, Wong S, Lu J, Colson LT, Wu C, Li SS, Chen Y (2012) Insights into high affinity small ubiquitin-like modifier (SUMO) recognition by SUMO-interacting motifs (SIMs) revealed by a combination of NMR and peptide array analysis. J Biol Chem 287:3231–3240

    Article  CAS  PubMed  Google Scholar 

  • Nathan D, Ingvarsdottir K, Sterner DE, Bylebyl GR, Dokmanovic M, Dorsey LA, Whelan KA, Krsmanovic M, Lane WS, Meluh PB, Johnson ES, Berger SL (2006) Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev 20:966–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak A, Muller S (2014) SUMO-specific proteases/isopeptidases: SENPs and beyond. Genome Biol 15:422

    Article  PubMed  PubMed Central  Google Scholar 

  • Okura T, Gong L, Kamitani T, Wada T, Okura I, Wei CF, Chang HM, Yeh ET (1996) Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J Immunol 157:4277–4281

    CAS  PubMed  Google Scholar 

  • Owerbach D, McKay EM, Yeh ET, Gabbay KH, Bohren KM (2005) A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem Biophys Res Commun 337:517–520

    Article  CAS  PubMed  Google Scholar 

  • Perry JJP, Tainer JA, Boddy MN (2008) A SIM-ultaneous role for SUMO and ubiquitin. Trends Biochem Sci 33:201–208

    Article  CAS  PubMed  Google Scholar 

  • Picard N, Caron V, Bilodeau S, Sanchez M, Mascle X, Aubry M, Tremblay A (2012) Identification of estrogen receptor beta as a SUMO-1 target reveals a novel phosphorylated sumoylation motif and regulation by glycogen synthase kinase 3beta. Mol Cell Biol 32:2709–2721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichler A, Gast A, Seeler JS, Dejean A, Melchior F (2002) The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108:109–120

    Article  CAS  PubMed  Google Scholar 

  • Potts PR, Yu HT (2005) Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol Cell Biol 25:7021–7032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prudden J, Pebernard S, Raffa G, Slavin DA, Perry JJP, Tainer JA, McGowan CH, Boddy MN (2007) SUMO-targeted ubiquitin ligases in genome stability. EMBO J 26:4089–4101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Psakhye I, Jentsch S (2012) Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell 151:807–820

    Article  CAS  PubMed  Google Scholar 

  • Raman N, Nayak A, Muller S (2013) The SUMO system: a master organizer of nuclear protein assemblies. Chromosoma 122:475–485

    Article  CAS  PubMed  Google Scholar 

  • Rangasamy D, Woytek K, Khan SA, Wilson VG (2000) SUMO-1 modification of bovine papillomavirus E1 protein is required for intranuclear accumulation. J Biol Chem 275:37999–38004

    Article  CAS  PubMed  Google Scholar 

  • Riising EM, Boggio R, Chiocca S, Helin K, Pasini D (2008) The polycomb repressive complex 2 is a potential target of SUMO modifications. PLoS One 3:e2704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosas-Acosta G, Russell WK, Deyrieux A, Russell DH, Wilson VG (2005) A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol Cell Proteomics 4:56–72

    Article  CAS  PubMed  Google Scholar 

  • Ross S, Best JL, Zon LI, Gill G (2002) SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol Cell 10:831–842

    Article  CAS  PubMed  Google Scholar 

  • Rytinki MM, Kaikkonen S, Pehkonen P, Jaaskelainen T, Palvimo JJ (2009) PIAS proteins: pleiotropic interactors associated with SUMO. Cell Mol Life Sci 66:3029–3041

    Article  CAS  PubMed  Google Scholar 

  • Sachdev S, Bruhn L, Sieber H, Pichler A, Melchior F, Grosschedl R (2001) PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev 15:3088–3103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahin U, de The H, Lallemand-Breitenbach V (2014) PML nuclear bodies: assembly and oxidative stress-sensitive sumoylation. Nucleus 5:499–507

    Article  PubMed  PubMed Central  Google Scholar 

  • Saitoh H, Hinchey J (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275:6252–6258

    Article  CAS  PubMed  Google Scholar 

  • Schmidt D, Muller S (2002) Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc Natl Acad Sci U S A 99:2872–2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekiyama N, Ikegami T, Yamane T, Ikeguchi M, Uchimura Y, Baba D, Ariyoshi M, Tochio H, Saitoh H, Shirakawa M (2008) Structure of the small ubiquitin-like modifier (SUMO)-interacting motif of MBD1-containing chromatin-associated factor 1 bound to SUMO-3. J Biol Chem 283:35966–35975

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Yamada S, Lualdi M, Dasso M, Kuehn MR (2013) SENP1 is essential for desumoylating SUMO1-modified proteins but dispensable for SUMO2 and SUMO3 deconjugation in the mouse embryo. Cell Rep 3:1640–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharrocks AD (2006) PIAS proteins and transcriptional regulation – more than just SUMO E3 ligases? Genes Dev 20:754–758

    Article  CAS  PubMed  Google Scholar 

  • Shen ZY, Pardingtonpurtymun PE, Comeaux JC, Moyzis RK, Chen DJ (1996) Ubl1, a human ubiquitin-like protein associating with human rad51/rad52 proteins. Genomics 36:271–279

    Article  CAS  PubMed  Google Scholar 

  • Shiio Y, Eisenman RN (2003) Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci U S A 100:13225–13230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Durrin LK, Wilkinson TA, Krontiris TG, Chen YA (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci U S A 101:14373–14378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spektor TM, Congdon LM, Veerappan CS, Rice JC (2011) The UBC9 E2 SUMO conjugating enzyme binds the PR-Set7 histone methyltransferase to facilitate target gene repression. PLoS One 6:e22785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Leverson JD, Hunter T (2007) Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J 26:4102–4112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tammsalu T, Matic I, Jaffray EG, Ibrahim AF, Tatham MH, Hay RT (2015) Proteome-wide identification of SUMO modification sites by mass spectrometry. Nat Protoc 10:1374–1388

    Article  CAS  PubMed  Google Scholar 

  • Tatemichi Y, Shibazaki M, Yasuhira S, Kasai S, Tada H, Oikawa H, Suzuki Y, Takikawa Y, Masuda T, Maesawa C (2015) Nucleus accumbens associated 1 is recruited within the promyelocytic leukemia nuclear body through SUMO modification. Cancer Sci 106:848–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatham MH, Jaffray E, Vaughan OA, Desterro JMP, Botting CH, Naismith JH, Hay RT (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276:35368–35374

    Article  CAS  PubMed  Google Scholar 

  • Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG, Palvimo JJ, Hay RT (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10:538–546

    Article  CAS  PubMed  Google Scholar 

  • Tempe D, Piechaczyk M, Bossis G (2008) SUMO under stress. Biochem Soc Trans 36:874–878

    Article  CAS  PubMed  Google Scholar 

  • Tong H, Hateboer G, Perrakis A, Bernards R, Sixma TK (1997) Crystal structure of murine/human Ubc9 provides insight into the variability of the ubiquitin-conjugating system. J Biol Chem 272:21381–21387

    Article  CAS  PubMed  Google Scholar 

  • Ungureanu D, Vanhatupa S, Kotaja N, Yang J, Aittomaki S, Janne OA, Palvimo JJ, Silvennoinen O (2003) PIAS proteins promote SUMO-1 conjugation to STAT1. Blood 102:3311–3313

    Article  CAS  PubMed  Google Scholar 

  • Uzunova K, Gottsche K, Miteva M, Weisshaar SR, Glanemann C, Schnellhardt M, Niessen M, Scheel H, Hofmann K, Johnson ES, Praefcke GJ, Dohmen RJ (2007) Ubiquitin-dependent proteolytic control of SUMO conjugates. J Biol Chem 282:34167–34175

    Article  CAS  PubMed  Google Scholar 

  • Van Nguyen T, Angkasekwinai P, Dou H, Lin FM, Lu LS, Cheng J, Chin YE, Dong C, Yeh ET (2012) SUMO-specific protease 1 is critical for early lymphoid development through regulation of STAT5 activation. Mol Cell 45:210–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verger A, Perdomo J, Crossley M (2003) Modification with SUMO – a role in transcriptional regulation. EMBO Rep 4:137–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vertegaal ACO, Andersen JS, Ogg SC, Hay RT, Mann M, Lamond AI (2006) Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol Cell Proteomics 5:2298–2310

    Article  CAS  PubMed  Google Scholar 

  • Wagner T, Kiweler N, Wolff K, Knauer SK, Brandl A, Hemmerich P, Dannenberg JH, Heinzel T, Schneider G, Kramer OH (2015) Sumoylation of HDAC2 promotes NF-kappaB-dependent gene expression. Oncotarget 6:7123–7135

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Taherbhoy AM, Hunt HW, Seyedin SN, Miller DW, Miller DJ, Huang DT, Schulman BA (2010) Crystal Structure of UBA2(ufd)-Ubc9: insights into E1-E2 interactions in SUMO pathways. PLoS One 5:e15805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wansleeben C, Zhao S, Miao P, Paschen W, Yang W (2014) SUMO2 is essential while SUMO3 is dispensable for mouse embryonic development. EMBO Rep 15:878–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasik U, Filipek A (2014) Non-nuclear function of sumoylated proteins. Biochim Biophys Acta 1843:2878–2885

    Article  CAS  PubMed  Google Scholar 

  • Weger S, Hammer E, Heilbronn R (2005) Topors acts as a SUMO-1 E3 ligase for p53 in vitro and in vivo. FEBS Lett 579:5007–5012

    Article  CAS  PubMed  Google Scholar 

  • Wei F, Scholer HR, Atchison ML (2007) Sumoylation of Oct4 enhances its stability, DNA binding, and transactivation. J Biol Chem 282:21551–21560

    Article  CAS  PubMed  Google Scholar 

  • Wei WZ, Yang P, Pang JF, Zhang S, Wang Y, Wang MH, Dong Z, She JX, Wang CY (2008) A stress-dependent SUMO4 sumoylation of its substrate proteins. Biochem Biophys Res Commun 375:454–459

    Article  CAS  PubMed  Google Scholar 

  • Wilson VG (2004) Sumoylation: molecular biology and biochemistry. Horizon Biosciences, Norfolk

    Google Scholar 

  • Wu YC, Bian XL, Heaton PH, Deyrieux AF, Wilson VG (2009) Host cell sumoylation level influences papillomavirus E2 protein stability. Virology 387:176–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Z, Chang JG, Hendriks IA, Sigurethsson JO, Olsen JV, Vertegaal AC (2015) System-wide analysis of SUMOylation dynamics in response to replication stress reveals novel small ubiquitin-like modified target proteins and acceptor lysines relevant for genome stability. Mol Cell Proteomics 14:1419–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Kerscher O, Kroetz MB, McConchie HF, Sung P, Hochstrasser M (2007) The yeast HEX3-SLX8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J Biol Chem 282:34176–34184

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Paschen W (2015) SUMO proteomics to decipher the SUMO-modified proteome regulated by various diseases. Proteomics 15:1181–1191

    Article  CAS  PubMed  Google Scholar 

  • Yang SH, Jaffray E, Hay RT, Sharrocks AD (2003) Dynamic interplay of the SUMO and ERK pathways in regulating Elk-1 transcriptional activity. Mol Cell 12:63–74

    Article  CAS  PubMed  Google Scholar 

  • Yang ML, Hsu CT, Ting CY, Liu LF, Hwang JL (2006a) Assembly of a polymeric chain of SUMO1 on human topoisomerase I in vitro. J Biol Chem 281:8264–8274

    Article  CAS  PubMed  Google Scholar 

  • Yang SH, Galanis A, Witty J, Sharrocks AD (2006b) An extended consensus motif enhances the specificity of substrate modification by SUMO. EMBO J 25:5083–5093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang FP, Mikkonen L, Toppari J, Palvimo JJ, Thesleff I, Janne OA (2008) SUMO-1 function is dispensable in normal mouse development. Mol Cell Biol 28:5381–5390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng J, Liu L, Wang S, Huang X (2015) SUMO-1 promotes Ishikawa cell proliferation and apoptosis in endometrial cancer by increasing Sumoylation of histone H4. Int J Gynecol Cancer 25:1364–1368

    Article  PubMed  Google Scholar 

  • Zhou W, Ryan JJ, Zhou H (2004) Global analyses of sumoylated proteins in Saccharomyces cerevisiae – induction of protein sumoylation by cellular stresses. J Biol Chem 279:32262–32268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We wish to thank other current and former members of the Wilson lab for discussions that helped form much of the work presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van G. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wilson, V.G. (2017). Introduction to Sumoylation. In: Wilson, V. (eds) SUMO Regulation of Cellular Processes. Advances in Experimental Medicine and Biology, vol 963. Springer, Cham. https://doi.org/10.1007/978-3-319-50044-7_1

Download citation

Publish with us

Policies and ethics