Skip to main content

Discover Toxicology: An Early Safety Assessment Approach

  • Chapter
  • First Online:
Translating Molecules into Medicines

Abstract

Early safety assessment efforts from target identification to lead development have undergone rapid growth and evolution over the last 10 years. In this chapter, we will discuss the current development trends driving the need for early safety assessment practices. We will discuss the key areas of focus which include target-related, off-target-related, and chemical property-related toxicities. We will offer an overview of the various scientific approaches being utilized in each of these focus areas along with an organizational framework that has proven effective in de-risking the early portfolio. We will conclude with some perspectives on application within the project team setting and traps associated with data over interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Imming P, Sinning C, Meyer A. Drugs, their targets and the nature and number of drug targets. Nature. 2006;5:821–34.

    CAS  Google Scholar 

  2. Dambach DM, Misner D, Brock M, Fullerton A, Proctor W, Maher J, Lee D, Ford K, Diaz D. Safety lead optimization and candidate identificaion: integrating new techologies into decision-making. Chem Res Toxicol. 2015;29(4):452–72.

    Article  PubMed  CAS  Google Scholar 

  3. LaBute MX, Zhang X, Lenderman J, et al. Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines. PLoS One. 2014;9(9):e106298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Kim MS, Pinto SM, Getnet D, et al. A draft map of the human proteome. Nature. 2014;509(7502):575–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.

    Article  CAS  PubMed  Google Scholar 

  6. Zhou PZ, Babcock J, Liu LQ, et al. Activation of human ether-a-go-go related gene (hERG) potassium channels by small molecules. Acta Pharmacol Sin. 2011;32(6):781–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jing Y, Easter A, Peters D, et al. In silico prediction of hERG inhibition. Future Med Chem. 2015;7(5):571–86.

    Article  CAS  PubMed  Google Scholar 

  8. Chen Y, Cheng F, Sun L, et al. Computational models to predict endocrine-disrupting chemical binding with androgen or oestrogen receptors. Ecotoxicol Environ Saf. 2014;110:280–7.

    Article  CAS  PubMed  Google Scholar 

  9. Vuorinen A, Odermatt A, Schuster D. In silico methods in the discovery of endocrine disrupting chemicals. J Steroid Biochem Mol Biol. 2013;137:18–26.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang L, Sedykh A, Tripathi A, et al. Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches. Toxicol Appl Pharmacol. 2013;272(1):67–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Davis MI, Hunt JP, Herrgard S, et al. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol. 2011;29(11):1046–51.

    Article  CAS  PubMed  Google Scholar 

  12. Sutherland JJ, Gao C, Cahya S, et al. What general conclusions can we draw from kinase profiling data sets? Biochim Biophys Acta. 2013;1834(7):1425–33.

    Article  CAS  PubMed  Google Scholar 

  13. Elangbam CS. Drug-induced valvulopathy: an update. Toxicol Pathol. 2010;38(6):837–48.

    Article  CAS  PubMed  Google Scholar 

  14. Godoy P, Hewitt NJ, Albrecht U, et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol. 2013;87(8):1315–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lanning BR, Whitby LR, Dix MM, et al. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat Chem Biol. 2014;10(9):760–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Singh J, Petter RC, Baillie TA, et al. The resurgence of covalent drugs. Nat Rev Drug Discov. 2011;10(4):307–17.

    Article  CAS  PubMed  Google Scholar 

  17. Lounkine E, Keiser MJ, Whitebread S, et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature. 2012;486(7403):361–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Whitebread S, Hamon J, Bojanic D, et al. Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development. Drug Discov Today. 2005;10(21):1421–33.

    Article  CAS  PubMed  Google Scholar 

  19. Andersen ME, Krewski D. Toxicity testing in the 21st century: bringing the vision to life. Toxicol Sci. 2009;107(2):324–30.

    Article  CAS  PubMed  Google Scholar 

  20. Kavlock RJ, Austin CP, Tice RR. Toxicity testing in the 21st century: implications for human health risk assessment. Risk Anal. 2009;29(4):485–7. discussion 492–487

    Article  PubMed  Google Scholar 

  21. Durazo SA, Kadam RS, Drechsel D, Patel M, Kompella UB. Brain mitochondria drug delivery: influence of drug physicochemical properties. Pharm Res. 2011;28(11):2833–47.

    Article  CAS  PubMed  Google Scholar 

  22. Wager TT, Chandrasekaran RY, Hou X, et al. Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes. ACS Chem Nerosci. 2010;1(6):420–34.

    Article  CAS  Google Scholar 

  23. Leeson PD, Springthorpe B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov. 2007;6(11):881–90.

    Article  CAS  PubMed  Google Scholar 

  24. Diaz D, Ford KA, Hartley DP, et al. Pharmacokinetic drivers of toxicity for basic molecules: strategy to lower pKa results in decreased tissue exposure and toxicity for a small molecule Met inhibitor. Toxicol Appl Pharmacol. 2013;266(1):86–94.

    Article  CAS  PubMed  Google Scholar 

  25. Kaufmann AM, Krise JP. Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications. J Pharm Sci. 2007;96(4):729–46.

    Article  CAS  PubMed  Google Scholar 

  26. Hughes JD, Blagg J, Price DA, et al. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg Med Chem Lett. 2008;18:4872–5.

    Article  CAS  PubMed  Google Scholar 

  27. Hughes TB, Miller GP, Swamidass SJ. Site of reactivity models predict molecular reactivity of diverse chemicals with glutathione. Chem Res Toxicol. 2015;28(4):797–809.

    Article  CAS  PubMed  Google Scholar 

  28. Masubuchi N, Makino C, Murayama N. Prediction of in vivo potential for metabolic activation of drugs into chemically reactive intermediate: correlation of in vitro and in vivo generation of reactive intermediates and in vitro glutathione conjugate formation in rats and humans. Chem Res Toxicol. 2007;20(3):455–64.

    Article  CAS  PubMed  Google Scholar 

  29. Maunz A, Gutlein M, Rautenberg M, et al. lazar: a modular predictive toxicology framework. Front Pharmacol. 2013;4:38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Schultz TW, Amcoff P, Berggren E, et al. A strategy for structuring and reporting a read-across prediction of toxicity. Regul Toxicol Pharmacol. 2015;72(3):586–601.

    Article  CAS  PubMed  Google Scholar 

  31. Berson A, Descatoire V, Sutton A, et al. Toxicity of alpidem, a peripheral benzodiazepine receptor ligand, but not zolpidem, in rat hepatocytes: role of mitochondrial permeability transition and metabolic activation. J Pharmacol Exp Ther. 2001;299(2):793–800.

    CAS  PubMed  Google Scholar 

  32. Ashby J, Tennant RW. Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals tested by the U.S. NTP. Mutat Res. 1991;257(3):229–306.

    Article  CAS  PubMed  Google Scholar 

  33. Doherty KR, Talbert DR, Trusk PB, et al. Structural and functional screening in human induced-pluripotent stem cell-derived cardiomyocytes accurately identifies cardiotoxicity of multiple drug types. Toxicol Appl Pharmacol. 2015;285(1):51–60.

    Article  CAS  PubMed  Google Scholar 

  34. Enayetallah AE, Puppala D, Ziemek D, et al. Assessing the translatability of in vivo cardiotoxicity mechanisms to in vitro models using causal reasoning. BMC Pharmacol Toxicol. 2013;14:46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Savary CC, Jiang X, Aubry M, et al. Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015;30(1 Pt A):27–35.

    Article  CAS  PubMed  Google Scholar 

  36. Eisenbrand G, Pool-Zobel B, Baker V, et al. Methods of in vitro toxicology. Food Chem Toxicol. 2002;40(2–3):193–236.

    Article  CAS  PubMed  Google Scholar 

  37. Kamalian L, Chadwick AE, Bayliss M, et al. The utility of HepG2 cells to identify direct mitochondrial dysfunction in the absence of cell death. Toxicol In Vitro. 2015;29(4):732–40.

    Article  CAS  PubMed  Google Scholar 

  38. Mundy WR, Radio NM, Freudenrich TM. Neuronal models for evaluation of proliferation in vitro using high content screening. Toxicology. 2010;270(2–3):121–30.

    Article  CAS  PubMed  Google Scholar 

  39. Shah F, Greene N. Analysis of Pfizer compounds in EPA’s ToxCast chemicals-assay space. Chem Res Toxicol. 2014;27(1):86–98.

    Article  CAS  PubMed  Google Scholar 

  40. Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012;40(Database issue):D1100–7.

    Article  CAS  PubMed  Google Scholar 

  41. Wang Y, Xiao J, Suzek TO, et al. PubChem’s BioAssay database. Nucleic Acids Res. 2012;40(Database issue):D400–12.

    Article  CAS  PubMed  Google Scholar 

  42. Hewitt M, Ellison CM, Cronin MT, et al. Ensuring confidence in predictions: a scheme to assess the scientific validity of in silico models. Adv Drug Deliv Rev. 2015;86:101–11.

    Article  CAS  PubMed  Google Scholar 

  43. Sanz F, Carriû P, Lûpez O, et al. Integrative modeling strategies for predicting drug toxicities at the eTOX project. Mol Inform. 2015;34:477–84.

    Article  CAS  PubMed  Google Scholar 

  44. Fielden MR, Adai A, Dunn 2nd RT, et al. Development and evaluation of a genomic signature for the prediction and mechanistic assessment of nongenotoxic hepatocarcinogens in the rat. Toxicol Sci. 2011;124(1):54–74.

    Article  CAS  PubMed  Google Scholar 

  45. Phillips DH, Arlt VM. Genotoxicity: damage to DNA and its consequences. EXS. 2009;99:87–110.

    CAS  PubMed  Google Scholar 

  46. Snyder RD, Green JW. A review of the genotoxicity of marketed pharmaceuticals. Mutat Res. 2001;488(2):151–69.

    Article  CAS  PubMed  Google Scholar 

  47. Jolly R, Ahmed KB, Zwickl C, et al. An evaluation of in-house and off-the-shelf in silico models: implications on guidance for mutagenicity assessment. Regul Toxicol Pharmacol. 2015;71(3):388–97.

    Article  CAS  PubMed  Google Scholar 

  48. Sedykh A, Zhu H, Tang H, et al. Use of in vitro HTS-derived concentration-response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity. Environ Health Perspect. 2011;119(3):364–70.

    Article  CAS  PubMed  Google Scholar 

  49. Sutherland JJ, Raymond JW, Stevens JL, et al. Relating molecular properties and in vitro assay results to in vivo drug disposition and toxicity outcomes. J Med Chem. 2012;55(14):6455–66.

    Article  CAS  PubMed  Google Scholar 

  50. Persson ML, Løye AF, Jacquet M, Mow NS, Thougaard AV, Mow T, Hornberg JJ. High-content analysis/screening for predictive toxicology: application to hepatotoxicity and genotoxicity. Basic Clin Pharmacol Toxicol. 2014;115:18–23.

    Article  CAS  PubMed  Google Scholar 

  51. O'Brien PJ. High-content analysis in toxicology: screening substances fro human toxicity potential, elucidating subcellular mechanisms and in vivo use as translational safety biomarkers. Basic Clin Pharmacol Toxicol. 2014;115(1):4–17.

    Article  PubMed  CAS  Google Scholar 

  52. Ryan TP, Stevens JL, Thomas CE. Strategic applications of toxicogenomics in early drug discovery. Curr Opin Pharmacol. 2008;8(5):654–60.

    Article  CAS  PubMed  Google Scholar 

  53. Clements M, Thomas N. High-throughput multi-parameter profiling of electrophysiological drug effects in human embryonic stem cell derived cardiomyocytes using multi-electrode arrays. Toxicol Sci. 2014;140(2):445–61.

    Article  CAS  PubMed  Google Scholar 

  54. Brix J, Zhou Y, Luo Y. The epigenetic reprogramming roadmap in generation of iPSCs from somatic cells. J Genet Genomics. 2015;42(12):661–70.

    Article  PubMed  Google Scholar 

  55. Mann DA. Human induced pluripotent stem cell-derived hepatocytes for toxicology testing. Expert Opin Drug Metab Toxicol. 2015;11(1):1–5.

    CAS  PubMed  Google Scholar 

  56. Fisher K, Vuppalanchi R, Saxena R. Drug-induced liver injury. Arch Pathol Lab Med. 2015;139:876–87.

    Article  PubMed  Google Scholar 

  57. Li Z, Berk M, TM MI, Gores GJ, Feldstein AE. The lysosomal-mitochondrial axis in free fatty acid-induced hepatic lipotoxicity. Hepatology. 2008;47(5):1495–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vereecke L, Beyaert R, van Loo G. Enterocyte death and intestinal barrier maintenance in homeostasis and disease. Trends Mol Med. 2011;17(10):584–93.

    Article  CAS  PubMed  Google Scholar 

  59. Simmons JG, Hoyt EC, Westwick JK, et al. Insulin-like growth factor-I and epidermal growth factor interact to regulate growth and gene expression in IEC-6 intestinal epithelial cells. Mol Endocrinol. 1995;9(9):1157–65.

    CAS  PubMed  Google Scholar 

  60. Wilson G. Cell culture techniques for the study of drug transport. Eur J Drug Metab Pharmacokinet. 1990;15(2):159–63.

    Article  CAS  PubMed  Google Scholar 

  61. Sato T, Clevers H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science. 2013;340(6137):1190–4.

    Article  CAS  PubMed  Google Scholar 

  62. Grabinger T, Luks L, Kostadinova F, et al. Ex vivo culture of intestinal crypt organoids as a model system for assessing cell death induction in intestinal epithelial cells and enteropathy. Cell Death Dis. 2014;5:e1228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Branco AF, Pereira SP, Gonzalez S, et al. Gene expression profiling of H9c2 myoblast differentiation towards a cardiac-like phenotype. PLoS One. 2015;10(6):e0129303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Sinnecker D, Laugwitz KL, Moretti A. Induced pluripotent stem cell-derived cardiomyocytes for drug development and toxicity testing. Pharmacol Ther. 2014;143(2):246–52.

    Article  CAS  PubMed  Google Scholar 

  65. Marieb EN, Hohn K. Human anatomy & physiology. 8th ed. San Francisco: Benjamin Cummings; 2010.

    Google Scholar 

  66. Abujarour R, Valamehr B. Generation of skeletal muscle cells from pluripotent stem cells: advances and challenges. Front Cell Dev Biol. 2015;3:29.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Laska DA, Williams PD, Reboulet JT, et al. The L6 muscle cell line as a tool to evaluate parenteral products for irritation. J Parenter Sci Technol. 1991;45(2):77–82.

    CAS  PubMed  Google Scholar 

  68. Laska DA, Williams PD, White SL, et al. In vitro correlation of ultrastructural morphology and creatine phosphokinase release in L6 skeletal muscle cells after exposure to parenteral antibiotics. In Vitro Cell Dev Biol. 1990;26(4):393–8.

    Article  CAS  PubMed  Google Scholar 

  69. Reams R, Thacker HL, Novilla M, et al. Development of an L6 myoblast in vitro model of moniliformin toxicosis. Mycopathologia. 1996;133(2):105–14.

    Article  CAS  PubMed  Google Scholar 

  70. Willy JA, Schulte NE, Kreklau EL, et al. In vitro L6 irritation assay predicts clinical injection site reactions for small molecules. Toxicol Sci. 2016;151(2):302–11.

    Article  CAS  PubMed  Google Scholar 

  71. Mayer L, Young Y. Infusion reactions and their management. Gastroenterol Clin North Am. 2006;35(4):857–66.

    Article  PubMed  Google Scholar 

  72. Parchment RE, Gordon M, Grieshaber CK, et al. Predicting hematological toxicity (myelosuppression) of cytotoxic drug therapy from in vitro tests. Ann Oncol. 1998;9(4):357–64.

    Article  CAS  PubMed  Google Scholar 

  73. Pessina A, Albella B, Bayo M, Bueren J, Brantom P, Casati S, Croera G, Gagliardi G, Foti P, Parchment R, Parent-Massin D, Schoeters G, Sibiril Y, Van Den Heuvel R, Gribaldo L. Application of the CFU-GM assay to predict acute drug-induced neutropenia: an international blind trial to validate a prediction model for maximum tolerated dose (MTD) of myelosuppressive xenobiotics. Toxicol Sci. 2003;75(2):355–67.

    Article  CAS  PubMed  Google Scholar 

  74. Yin T, Lallena MJ, Kreklau EL, et al. A novel CDK9 inhibitor shows potent antitumor efficacy in preclinical hematologic tumor models. Mol Cancer Ther. 2014;13(6):1442–56.

    Article  CAS  PubMed  Google Scholar 

  75. Zhao H, Oczos J, Janowski P, et al. Rationale for the real-time and dynamic cell death assays using propidium iodide. Cytometry A. 2010;77(4):399–405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Jennings P. The future of in vitro toxicology. Toxicol In Vitro. 2015;29(6):1217–21.

    Article  CAS  PubMed  Google Scholar 

  77. Krause MN, Sancho-Martinez I, Izpisua Belmonte JC. Understanding the molecular mechanisms of reprogramming. Biochem Biophys Res Commun. 2016;473(3):693–7.

    Article  CAS  PubMed  Google Scholar 

  78. Ben-Reuven L, Reiner O. Modeling the autistic cell: iPSCs recapitulate developmental principles of syndromic and nonsyndromic ASD. Dev Growth Differ. 2016;58(5):481–91.

    Article  PubMed  Google Scholar 

  79. Kawser Hossain M, Abdal Dayem A, Han J, et al. Recent advances in disease modeling and drug discovery for diabetes mellitus using induced pluripotent stem cells. Int J Mol Sci. 2016;17(2):256.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Spitalieri P, Talarico VR, Murdocca M, et al. Human induced pluripotent stem cells for monogenic disease modelling and therapy. World J Stem Cells. 2016;8(4):118–35.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Cerignoli F, Charlot D, Whittaker R, et al. High throughput measurement of Ca(2)(+) dynamics for drug risk assessment in human stem cell-derived cardiomyocytes by kinetic image cytometry. J Pharmacol Toxicol Methods. 2012;66(3):246–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Guo L, Abrams RM, Babiarz JE, et al. Estimating the risk of drug-induced proarrhythmia using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci. 2011;123(1):281–9.

    Article  CAS  PubMed  Google Scholar 

  83. Sirenko O, Crittenden C, Callamaras N, et al. Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells. J Biomol Screen. 2013;18(1):39–53.

    Article  CAS  PubMed  Google Scholar 

  84. Coyne L, Shan M, Przyborski SA, et al. Neuropharmacological properties of neurons derived from human stem cells. Neurochem Int. 2011;59(3):404–12.

    Article  CAS  PubMed  Google Scholar 

  85. Deshmukh RS, Kovacs KA, Dinnyes A. Drug discovery models and toxicity testing using embryonic and induced pluripotent stem-cell-derived cardiac and neuronal cells. Stem Cells Int. 2012;2012:379569.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Schwartz RE, Fleming HE, Khetani SR, et al. Pluripotent stem cell-derived hepatocyte-like cells. Biotechnol Adv. 2014;32(2):504–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fabre KM, Livingston C, Tagle DA. Organs-on-chips (microphysiological systems): tools to expedite efficacy and toxicity testing in human tissue. Exp Biol Med (Maywood). 2014;239(9):1073–7.

    Article  CAS  Google Scholar 

  88. Aronson JK. Biomarkers and surrogate endpoints. Br J Clin Pharmacol. 2005;59(5):491–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5(6):463–6.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Amur S, Frueh FW, Lesko LJ, et al. Integration and use of biomarkers in drug development, regulation and clinical practice: a US regulatory perspective. Biomark Med. 2008;2(3):305–11.

    Article  CAS  PubMed  Google Scholar 

  91. Pritchard JF, Jurima-Romet M, Reimer ML, et al. Making better drugs: decision gates in non-clinical drug development. Nat Rev Drug Discov. 2003;2(7):542–53.

    Article  CAS  PubMed  Google Scholar 

  92. Sharma S, Jackson PG, Makan J. Cardiac troponins. J Clin Pathol. 2004;57(10):1025–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Engle SK, Jordan WH, Pritt ML, et al. Qualification of cardiac troponin I concentration in mouse serum using isoproterenol and implementation in pharmacology studies to accelerate drug development. Toxicol Pathol. 2009;37(5):617–28.

    Article  CAS  PubMed  Google Scholar 

  94. Goodsaid FM, Frueh FW, Mattes W. The Predictive Safety Testing Consortium: a synthesis of the goals, challenges and accomplishments of the Critical Path. Drug Discov Today Technol. 2007;4(2):47–50.

    Article  PubMed  Google Scholar 

  95. Mikaelian I, Cameron M, Dalmas DA, et al. Nonclinical safety biomarkers of drug-induced vascular injury: current status and blueprint for the future. Toxicol Pathol. 2014;42(4):635–57.

    Article  PubMed  Google Scholar 

  96. Ozer JS, Dieterle F, Troth S, et al. A panel of urinary biomarkers to monitor reversibility of renal injury and a serum marker with improved potential to assess renal function. Nat Biotechnol. 2010;28(5):486–94.

    Article  CAS  PubMed  Google Scholar 

  97. Vaidya VS, Ozer JS, Dieterle F, et al. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat Biotechnol. 2010;28(5):478–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vinken P, Reagan WJ, Rodriguez LA, et al. Cross-laboratory analytical validation of the cardiac biomarker NT-proANP in rat. J Pharmacol Toxicol Methods. 2016;77:58–65.

    Article  CAS  PubMed  Google Scholar 

  99. Bodié K, Buck WR, Pieh J, et al. Biomarker evaluation of skeletal muscle toxicity following clofibrate administration in rats. Exp Toxicol Pathol. 2016;68(5):289–99.

    Article  PubMed  CAS  Google Scholar 

  100. Engle SK, Watson DE. Natriuretic peptides as cardiovascular safety biomarkers in rats: comparison with blood pressure, heart rate, and heart weight. Toxicol Sci. 2016;149(2):458–72.

    Article  CAS  PubMed  Google Scholar 

  101. John-Baptiste A, Vitsky A, Sace F, et al. Comparison of 3 kidney injury multiplex panels in rats. Int J Toxicol. 2012;31(6):529–36.

    Article  CAS  PubMed  Google Scholar 

  102. Siaj R, Sauer V, Stöppeler S, et al. Longitudinal analysis of serum miR-122 in a rat model of Wilson’s disease. Hepatol Int. 2012;6(4):770–7.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Usborne AL, Smith AT, Engle SK, et al. Biomarkers of exocrine pancreatic injury in 2 rat acute pancreatitis models. Toxicol Pathol. 2014;42(1):195–203.

    Article  CAS  PubMed  Google Scholar 

  104. Jameson DM, Croney JC, Moens PD. Fluorescence: basic concepts, practical aspects, and some anecdotes. Methods Enzymol. 2003;360:1–43.

    Article  CAS  PubMed  Google Scholar 

  105. Kohnhorst CL, Schmitt DL, Sundaram A, et al. Subcellular functions of proteins under fluorescence single-cell microscopy. Biochim Biophys Acta. 2016;1864(1):77–84.

    Article  CAS  PubMed  Google Scholar 

  106. Efthymiou A, Shaltouki A, Steiner JP, et al. Functional screening assays with neurons generated from pluripotent stem cell-derived neural stem cells. J Biomol Screen. 2014;19(1):32–43.

    Article  CAS  PubMed  Google Scholar 

  107. Radio NM, Mundy WR. Developmental neurotoxicity testing in vitro: models for assessing chemical effects on neurite outgrowth. Neurotoxicology. 2008;29(3):361–76.

    Article  CAS  PubMed  Google Scholar 

  108. Ganter B, Tugendreich S, Pearson CI, et al. Development of a large-scale chemogenomics database to improve drug candidate selection and to understand mechanisms of chemical toxicity and action. J Biotechnol. 2005;119(3):219–44.

    Article  CAS  PubMed  Google Scholar 

  109. Guengerich FP, MacDonald JS. Applying mechanisms of chemical toxicity to predict drug safety. Chem Res Toxicol. 2007;20(3):344–69.

    Article  CAS  PubMed  Google Scholar 

  110. Langfelder P, Horvath S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol. 2007;1:54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Sutherland JJ, Jolly RA, Goldstein KM, et al. Assessing concordance of drug-induced transcriptional response in rodent liver and cultured hepatocytes. PLoS Comput Biol. 2016;12(3):e1004847.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Gibson JK, Yue Y, Bronson J, et al. Human stem cell-derived cardiomyocytes detect drug-mediated changes in action potentials and ion currents. J Pharmacol Toxicol Methods. 2014;70(3):255–67.

    Article  CAS  PubMed  Google Scholar 

  113. Johnstone AF, Gross GW, Weiss DG, et al. Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology. 2010;31(4):331–50.

    Article  CAS  PubMed  Google Scholar 

  114. Willy JA, Young SK, Stevens JL, et al. CHOP links endoplasmic reticulum stress to NF-kappaB activation in the pathogenesis of nonalcoholic steatohepatitis. Mol Biol Cell. 2015;26(12):2190–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gaj T, Gersbach CA, Barbas 3rd CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lin S, Staahl BT, Alla RK, et al. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife. 2014;3:e04766.

    PubMed  PubMed Central  Google Scholar 

  117. Maruyama T, Dougan SK, Truttmann MC, et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. 2015;33(5):538–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas K. Baker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Baker, T.K., Engle, S.K., Halstead, B.W., Paisley, B.M., Searfoss, G.H., Willy, J.A. (2017). Discover Toxicology: An Early Safety Assessment Approach. In: Bhattachar, S., Morrison, J., Mudra, D., Bender, D. (eds) Translating Molecules into Medicines. AAPS Advances in the Pharmaceutical Sciences Series, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-50042-3_5

Download citation

Publish with us

Policies and ethics