Skip to main content

Alternate Routes of Administration

  • Chapter
  • First Online:
Translating Molecules into Medicines

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 25))

  • 1969 Accesses

Abstract

Patients, caregivers, payers, drug developers, and the continually evolving standard of care all play a critical role in shaping the drug product and formulation requirements to better meet unmet medical needs of patients. A significant area of growth in recent years has been in the non-oral route of administration (alternate route and injectable route of administration, RoA). The use of drug products for alternate route of administration or the use of drug-device combination products offers an opportunity to enable a product in situations where there are significant oral challenges, such as extensive gastrointestinal metabolism, low oral bioavailability, suboptimal oral PK, local gastrointestinal toxicity, or other adverse reactions. Additionally, drug-device combination products (both injectable and non-injectable for alternate route products) present an opportunity to consider an enhanced product that improves patient compliance and increases treatment options to manage diseases.

In this chapter, alternate routes of administration such as intranasal, inhalation, buccal/sublingual, and transdermal approaches for delivery of drug candidates to systemic molecular targets are discussed. The rationale for each route of administration, including their strengths and limitations, drug molecule developability criteria, and recommended preclinical testing experiments to enable such products, is reviewed.

There has been a steady trend over the past decade in which self-administration has become more and more prevalent among patients. As a result, devices are being developed that incorporate more patient requirements, such as portability, intuitiveness, ease of use, and other human factor considerations. In addition, with the growth of mobile health applications, devices are becoming more connected with mobile devices, enabling better patient compliance with treatment regimens and advancement in standards of care. Product trends and recent advances are outlined in this chapter together with strategies to consider for clinical testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

B/SL:

Buccal/sublingual

BCS:

Biopharmaceutical classification system

CVC:

Central venous catheters

DPI:

Dry-powder inhaler

ID:

Intradermal

IM:

Intramuscular

IN:

Intranasal

INH:

Inhalation

IV:

Intravenous

MDI:

Metered-dose inhaler

MN:

Microneedles

NME:

New molecular entity

PD:

Pharmacodynamic

PFSs:

Prefilled syringes

PICCs:

Peripherally inserted central catheters

PK:

Pharmacokinetic

RoA:

Route of administration

SC:

Subcutaneous

TD:

Transdermal

References

  1. Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3:711–6.

    Article  CAS  PubMed  Google Scholar 

  2. Sollano JA, Kirsh JM, Bala MV, Chambers MG, Harpole LH. The economics of drug discovery and the ultimate valuation of pharmacotherapies in the marketplace. Clin Pharmacol Ther. 2008;84:263–6.

    Article  CAS  PubMed  Google Scholar 

  3. Venkatesh S, Lipper RA. Role of development scientist in compound lead selection and optimization. J Pharm Sci. 2000;89:145–54.

    Article  CAS  PubMed  Google Scholar 

  4. Pharmacircle database search result. 2016. http://www.pharmacircle.com/. Accessed May 2016.

  5. Pharmaceutical Research & Manufacturers of America. 2013. http://www.phrma.org. 2013 Overview: Medicines in development—biologics (pdf).

  6. Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov. 2014;13:655–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mahmood I. First-in-human dose selection, interspecies pharmacokinetic scaling: principles and application of allometric scaling. Rockville, MD: Pine House Publishers; 2005.

    Google Scholar 

  8. Food and Drug Administration, CDER. Guidance for industry: estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. 2005.

    Google Scholar 

  9. Shyu WC, Mayol RL, Pfeffer M, Pittman KA, Gammans RE, Barbhaiya RH. Biopharmaceutical evaluation of transnasal, sublingual and buccal disk dosage forms of butorphanol. Biopharm Drug Dispos. 1993;14:371–9.

    Article  CAS  PubMed  Google Scholar 

  10. Hajek P, West R, Foulds J, Nilsson F, Burrows S, Meadow A. Randomized comparative trial of nicotine polacrilex, a transdermal patch, nasal spray, and an inhaler. Arch Intern Med. 1999;159:2033–8.

    Article  CAS  PubMed  Google Scholar 

  11. Gedulin BR, Smith PA, Jodka CM, Chen K, Bhavsar S, Nielsen LL, Parkes DG, Young AA. Pharmacokinetics and pharmacodynamics of exenatide following alternate routes of administration. Int J Pharm. 2008;356:231–8.

    Article  CAS  PubMed  Google Scholar 

  12. Adjei A, Sundberg D, Miller J, Chun A. Bioavailability of leuprolide acetate following nasal and inhalation delivery to rats and healthy humans. Pharm Res. 1992;9:244–9.

    Article  CAS  PubMed  Google Scholar 

  13. Aungst BJ, Rogers NJ, Shefter E. Comparison of nasal, rectal, buccal, sublingual and intramuscular insulin efficacy and the effects of a bile salt absorption promoter. J Pharmacol Exp Ther. 1987;244:23–7.

    Google Scholar 

  14. Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC. Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm. 2007;337:1–24.

    Article  CAS  PubMed  Google Scholar 

  15. Rojanasakul Y, Wang LY, Bhat M, Glover DD, Malanga CJ, Ma JK. The transport barrier of epithelia: a comparative study on membrane permeability and charge selectivity in the rabbit. Pharm Res. 1992;9:1029–34.

    Article  CAS  PubMed  Google Scholar 

  16. Behl CR, Pimplaskar HK, Sileno AP, deMeireles J, Romeo VD. Effects of physicochemical properties and other factors on systemic nasal drug delivery. Adv Drug Deliv Rev. 1998;29:89–116.

    Article  CAS  PubMed  Google Scholar 

  17. Corbo DC, Liu JC, Chien YW. Characterization of the barrier properties of mucosal membranes. J Pharm Sci. 1990;79:202–6.

    Article  CAS  PubMed  Google Scholar 

  18. Madara JL, Dharmsathaphorn K. Occluding junction structure-function relationships in a cultured epithelial monolayer. J Cell Biol. 1985;101:2124–33.

    Article  CAS  PubMed  Google Scholar 

  19. Soane RJ, Frier M, Perkins AC, Jones NS, Davis SS, Illum L. Evaluation of the clearance characteristics of bioadhesive systems in humans. Int J Pharm. 1999;178:55–65.

    Article  CAS  PubMed  Google Scholar 

  20. Gizurarson S. The relevance of nasal physiology to the design of drug absorption studies. Adv Drug Deliv Rev. 1993;11:329–47.

    Article  CAS  Google Scholar 

  21. Behl CR, Pimplaskar HK, Sileno AP, Xia WJ, Gries WJ, deMeireles J, Romeo VD. Optimizing of systemic nasal drug delivery with pharmaceutical excipients. Adv Drug Deliv Rev. 1998;29:117–33.

    Article  CAS  PubMed  Google Scholar 

  22. Pujara CP, Shao Z, Duncan MR, Mitra AK. Effects of formulation variables on nasal epithelial cell integrity: biochemical evaluations. Int J Pharm. 1995;114:197–203.

    Article  CAS  Google Scholar 

  23. Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective—a review. Drug Deliv Transl Res. 2013;3:42–62.

    Article  CAS  PubMed  Google Scholar 

  24. Djupesland PG, Messina JC, Mahmoud R. The nasal approach for delivering treatments for brain diseases: an anatomic, physiologic and delivery technology overview. Ther Deliv. 2014;5:70–733.

    Article  Google Scholar 

  25. Ruigrok MJ, de Lange E. Emerging insights for translational pharmacokinetic and pharmacokinetic-pharmacodynamic studies: towards prediction of nose-to-brain transport in humans. AAPS J. 2015;17:493–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Forbes B. Human airway epithelial cell lines for in vitro drug transport and metabolism studies. Pharm Sci Technolo Today. 2000;3:18–27.

    Article  CAS  PubMed  Google Scholar 

  27. Newman SP, Pitcairn GR, Dalby RN. Drug delivery to the nasal cavity: in vitro and in vivo assessment. Crit Rev Ther Drug Carrier Syst. 2004;21:21–66.

    Article  PubMed  Google Scholar 

  28. Mathias NR, Yamashita F, Lee VHL. Respiratory epithelial cell culture models for evaluation of ion and drug transport. Adv Drug Deliv Rev. 1996;22:215–50.

    Article  CAS  Google Scholar 

  29. Mathias NR, Moench P, Heran C, Hussain MA, Smith RL. Rat nasal lavage biomarkers to assess preclinical irritation potential of nasal drug formulations and excipients. J Pharm Sci. 2008;98(2):495–502.

    Article  Google Scholar 

  30. Zhang H, Zhang J, Streisand JB. Oral mucosal drug delivery: clinical pharmacokinetics and therapeutic applications. Clin Pharmacokinet. 2002;41:661–80.

    Article  CAS  PubMed  Google Scholar 

  31. Rathbone MJ, Ponchel G, Ghazali FA. Systemic oral mucosal drug delivery and delivery systems. In: Rathbone MJ, editor. Oral mucosal drug delivery. New York: Marcel Dekker; 1996. p. 241–84.

    Google Scholar 

  32. Squier CA, Wertz PW. Structure and function of the oral mucosa and implications for drug delivery. In: Rathbone MJ, editor. Oral mucosal drug delivery. New York: Marcel Dekker; 1996. p. 1–26.

    Google Scholar 

  33. Pather SI, Rathbone MJ, Senel S. Current status and the future of buccal drug delivery systems. Expert Opin Drug Deliv. 2008;5:531–42.

    Article  CAS  PubMed  Google Scholar 

  34. Aungst BJ. Oral mucosal permeation enhancement: possibilities and limitations. In: Rathbone MJ, editor. Oral mucosal drug delivery. New York: Marcel Dekker; 1996. p. 65–84.

    Google Scholar 

  35. Junginger HE, Hoogstrate JA, Verhoef JC. Recent advances in buccal delivery and absorption - in vitro and in vivo studies. J Control Release. 1999;65:149–59.

    Article  Google Scholar 

  36. Audus KL. Buccal epithelial cell cultures as a model to study oral mucosal drug transport and metabolism. In: Rathbone MJ, editor. Oral mucosal drug delivery. New York: Marcel Dekker; 1996. p. 101–19.

    Google Scholar 

  37. Zhang H, Robinson JR. In vitro methods for measuring permeability of the oral mucosa. In: Rathbone MJ, editor. Oral mucosal drug delivery. New York: Marcel Dekker; 1996. p. 85–100.

    Google Scholar 

  38. Rathbone MJ, Purves R, Ghazali FA, Ho PC. In vivo techniques for studying the oral mucosal absorption characteristics of drugs in animals and humans. In: Rathbone MJ, editor. Oral mucosal drug delivery. New York: Marcel Dekker; 2008. p. 121–56.

    Google Scholar 

  39. Dali MM, Moench PA, Mathias NR, Stetsko PI, Heran CL, Smith RL. A rabbit model for sublingual drug delivery: comparison with human pharmacokinetic studies of propranolol, verapamil and captopril. J Pharm Sci. 2006;95:37–44.

    Article  CAS  PubMed  Google Scholar 

  40. Moench PA, Heran CL, Stetsko PI, Mathias NR, Wall DA, Hussain MA, Smith RL. The effect of anesthesia on the pharmacokinetics of sublingually administered verapamil in rabbits. J Pharm Sci. 2003;92:1735–8.

    Article  CAS  PubMed  Google Scholar 

  41. Schanker LS. Drug absorption from the lung. Biochem Pharmacol. 1978;27:381–5.

    Article  CAS  PubMed  Google Scholar 

  42. Enna SJ, Schanker LS. Absorption of drugs from the rat lung. Am J Phys. 1972;223:1227–31.

    CAS  Google Scholar 

  43. Patton JS, Fishburb CS, Weers JG. The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc. 2004;1:338–44.

    Article  CAS  PubMed  Google Scholar 

  44. Taylor G. The absorption and metabolism of xenobiotics in the lung. Adv Drug Deliv Rev. 1990;5:37–61.

    Article  CAS  Google Scholar 

  45. Esmailpour N, Hogger P, Rabe KF, Heitmann U, Nakashima M, Rohdewald R. Distribution of inhaled fluticasone propionate between human lung tissue and serum in vivo. Eur Respir J. 1997;10:1496–9.

    Article  CAS  PubMed  Google Scholar 

  46. Debs R, Brunette E, Fuchs H, Lin E, Shah M, Hargis A, Montgomery AB. Biodistribution, tissue reaction, and lung retention of pentamidine aerosolized as three different salts. Am Rev Respir Dis. 1990;142:1164–7.

    Article  CAS  PubMed  Google Scholar 

  47. Omri A, Beaulac C, Bouhajib M, Montplaisir S, Sharkawi M, Lagacé J. Pulmonary retention of free and liposome-encapsulated tobramycin after intratracheal administration in uninfected rats and rats infected with Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1994;38:1090–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tronde A, Norden B, Machner H, Wendel A-K, Lennernas H, Bengtsson U. Pulmonary absorption rate and bioavailability of drugs in vivo in rats: structure-absorption relationships and physicochemical profiling of inhaled drugs. J Pharm Sci. 2003;92:1216–33.

    Article  CAS  PubMed  Google Scholar 

  49. Manford F, Tronde A, Jeppsson A-B, Patel N, Johansson F, Forbes B. Drug permeability in 16HBE14o- airway cell layers correlates with absorption from the isolated perfused rat lung. Eur J Pharm Sci. 2005;26:414–20.

    Article  CAS  PubMed  Google Scholar 

  50. Mathias NR, Timoszyk J, Stetsko PI, Megill JR, Smith RL, Wall D. Permeability characteristics of Calu-3 human bronchial epithelial cells: in vitro-in vivo correlation to predict lung absorption in rats. J Drug Target. 2002;10:31–40.

    Article  CAS  Google Scholar 

  51. Sakagami M. In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. Adv Drug Deliv Rev. 2006;58:1030–60.

    Article  CAS  PubMed  Google Scholar 

  52. Byron RR, Roberts NSR, Clark AR. An isolated perfused rat lung preparation for the study of aerosolized drug deposition and absorption. J Pharm Sci. 1986;75:168–71.

    Article  CAS  PubMed  Google Scholar 

  53. Schanker LS, Mitchell EW, Brown RA. Species comparison of drug absorption from the lung after aerosol inhalation or intratracheal injection. Drug Metab Dispos. 1986;14:79–88.

    CAS  PubMed  Google Scholar 

  54. Strengert M, UG K. Analysis of epithelial barrier integrity in polarized lung epithelial cells. Methods Mol Biol. 2011;763:195–206.

    Article  CAS  PubMed  Google Scholar 

  55. Roberts MS, Cross SE, Watkinson AC. Skin transport. In: Walters KA, editor. Dermatological and transdermal formulations. Informa Healthcare USA, Inc.: New York; 2002. p. 197–270.

    Google Scholar 

  56. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26:1261–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kanikkannan N, Kandimalla K, Lamba SS, Singh M. Structure-activity relationship of chemical penetration enhancers in transdermal drug delivery. Curr Med Chem. 2000;7:593–608.

    Article  CAS  PubMed  Google Scholar 

  58. Thong HY, Zhari H, Maibach HI. Percutaneous penetration enhancers: an overview. Skin Pharmacol Physiol. 2007;20:272–82.

    Article  PubMed  Google Scholar 

  59. Kalia Y, Naik A, Garrison J, Guy R. Iontophoretic drug delivery. Adv Drug Deliv Rev. 2004;56:619–58.

    Article  CAS  PubMed  Google Scholar 

  60. Degim IT. New tools and approaches for predicting skin permeability. Drug Discov Today. 2006;11:517–23.

    Article  CAS  PubMed  Google Scholar 

  61. Godin B, Touitou E. Transdermal skin delivery: predictions for human from in vivo, ex vivo and animal models. Adv Drug Deliv Rev. 2007;59:1152–61.

    Article  CAS  PubMed  Google Scholar 

  62. Brain KR, Walters KA, Watkinson AC. Methods for studying percutaneous absorption. In: Walters KA, editor. Dermatological and transdermal formulations. New York: Marcel Dekker; 2002. p. 197–269.

    Google Scholar 

  63. Cleary GW. Transdermal delivery systems: a medical rationale. In: Shah VP, Maibach HI, editors. Topical drug bioavailability, bioequivalence and penetration. New York: Plenum Press; 1993. p. 17–68.

    Chapter  Google Scholar 

  64. Wester RC, Maibach HI. In vivo methods for percutaneous absorption measurements. In: Brounaugh RL, Maibach HI, editors. Percutaneous absorption: mechanisms-methodology-drug delivery. 2nd ed. New York: Marcel Dekker; 1989. p. 215–37.

    Google Scholar 

  65. Gibbs S. In vitro irritation models and immune reaction. Skin Pharmacol Physiol. 2009;22:103–13.

    Article  CAS  PubMed  Google Scholar 

  66. Global Drug Delivery Market by Type—Global Forecasts to 2020, Markets & Markets. 2015.

    Google Scholar 

  67. Skin Layers. https://upload.wikimedia.org/wikipedia/commons/3/36/Skin_layers.png. Accessed June 2016.

  68. Intra-dermal injection adaptor. 2016. http://www.westpharma.com/en/products/Documents/ID%20Adapter%20Sell%20Sheet%208353%20LR.pdf.

  69. Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 2012;64:1547.

    Google Scholar 

  70. Weiss LW, Clark FC. Three protocols for measuring subcutaneous fat thickness on the upper extremeties. Eur J Appl Physiol Occup Physiol. 1987;56:217–21.

    Google Scholar 

  71. Beyea SC, Nicoll LH. Administration of medications via intramuscular route: an integrative review of literature and research based protocol for the procedure. Appl Nurs Res. 1995;8:23–33.

    Article  CAS  PubMed  Google Scholar 

  72. Centers for Disease Control and Prevention. Diabetes Report Card 2014. Atlanta, GA: Centers for Disease Control and Prevention, US Department of Health and Human Services; 2015.

    Google Scholar 

  73. US Food and Drug Administration. Applying Human Factors and Usability Engineering to Optimize Medical Device Design. Draft guidance. 2011. Document issued on: 22 June 2011.

    Google Scholar 

  74. Ravi AD, Sadhana D, Nagpaal D, Chawla L. Needle free injection technologies: a complete insight. Int J Pharm Investig 2015;5(4):192–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Mathias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Mathias, N., Sridharan, S. (2017). Alternate Routes of Administration. In: Bhattachar, S., Morrison, J., Mudra, D., Bender, D. (eds) Translating Molecules into Medicines. AAPS Advances in the Pharmaceutical Sciences Series, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-50042-3_13

Download citation

Publish with us

Policies and ethics