Skip to main content

Pharmaceutical Industry Performance

  • Chapter
  • First Online:
Translating Molecules into Medicines

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 25))

  • 2009 Accesses

Abstract

Good health is a priority for all. Medicines are an important aspect of maintaining good health. However, medicines are very difficult to discover, develop, and provide to patients. There are many more failures than successes resulting in high attrition rates. Analysis shows there is more than one way to discover medicines. As a consequence, the pharmaceutical industry is continuously reshaping itself to address the challenges of high attrition. This introductory chapter will highlight some of the challenges to pharmaceutical industry productivity, how they are currently addressed, and how the industry is reshaping itself to address these challenges. It is concluded that addressing these challenges creates many new opportunities for innovation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lanthier M, Miller KL, Nardinelli C, Woodcock J. An improved approach to measuring drug innovation finds steady rates of first-in-class pharmaceuticals, 1987–2011. Health Aff. 2013;32:1433–9. doi:10.1377/hlthaff.2012.0541. Published online Epub Aug

    Article  Google Scholar 

  2. Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov. 2010;9:203–14. doi:10.1038/nrd3078. Published online Epub Mar

    CAS  PubMed  Google Scholar 

  3. Munos B. Lessons from 60 years of pharmaceutical innovation. Nat Rev Drug Discov. 2009;8:959–68. doi:10.1038/nrd2961. Published online Epub Dec

    Article  CAS  PubMed  Google Scholar 

  4. Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov. 2012;11:191–200. doi:10.1038/nrd3681. Published online Epub Mar

    Article  CAS  PubMed  Google Scholar 

  5. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32:40–51. doi:10.1038/nbt.2786. Published online Epub Jan

    Article  CAS  PubMed  Google Scholar 

  6. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372:793–5. doi:10.1056/NEJMp1500523. Published online Epub Feb 26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kusiak A. Put innovation science at the heart of discovery. Nature. 2016;530:255. doi:10.1038/530255a. Published online Epub Feb 18

    Article  CAS  PubMed  Google Scholar 

  8. Kaplan W, Wirtz VJ, Mantel-Teeuwisse A, Stolk P, Duthey B, Laing R. Priority medicines for Europe and the World 2013 update. http://www.who.int/medicines/areas/priority_medicines/MasterDocJune28_FINAL_Web.pdf

  9. Downing NS, Krumholz HM, Ross JS, Shah ND. Regulatory watch: characterizing the US FDA’s approach to promoting transformative innovation. Nat Rev Drug Discov. 2015;14:740–1. doi:10.1038/nrd4734. Published online Epub Nov

    Article  CAS  PubMed  Google Scholar 

  10. Capdeville R, Buchdunger E, Zimmermann J, Matter A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov. 2002;1:493–502. doi:10.1038/nrd839. Published online Epub July

    Article  CAS  PubMed  Google Scholar 

  11. Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K, Hirth P. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov. 2012;11:873–86. doi:10.1038/nrd3847. Published online Epub Nov

    Article  CAS  PubMed  Google Scholar 

  12. Ehrlich P. Chemotherapeutics: scientific principles, methods, and results. Lancet. 1913;182:445–51.

    Article  Google Scholar 

  13. Swinney DC. Biochemical mechanisms of drug action: what does it take for success? Nat Rev Drug Discov. 2004;3:801–8. doi:10.1038/nrd1500. Published online Epub Sep

    Article  CAS  PubMed  Google Scholar 

  14. Swinney DC. The role of binding kinetics in therapeutically useful drug action. Curr Opin Drug Discov Devel. 2009;12:31–9. Published online Epub Jan

    CAS  PubMed  Google Scholar 

  15. Copeland RA, Pompliano DL, Meek TD. Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov. 2006;5:730–9. doi:10.1038/nrd2082. Published online Epub Sep

    Article  CAS  PubMed  Google Scholar 

  16. Tummino PJ, Copeland RA. Residence time of receptor-ligand complexes and its effect on biological function. Biochemistry. 2008;47:5481–92. doi:10.1021/bi8002023. Published online Epub May 20

    Article  CAS  PubMed  Google Scholar 

  17. Lu H, Tonge PJ. Drug-target residence time: critical information for lead optimization. Curr Opin Chem Biol. 2010;14:467–74. doi:10.1016/j.cbpa.2010.06.176. Published online Epub Aug

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Remuzzi G, Perico N, Benigni A. New therapeutics that antagonize endothelin: promises and frustrations. Nat Rev Drug Discov. 2002;1:986–1001. doi:10.1038/nrd962. Published online Epub Dec

    Article  CAS  PubMed  Google Scholar 

  19. Wood JM, Maibaum J, Rahuel J, Grutter MG, Cohen NC, Rasetti V, Ruger H, Goschke R, Stutz S, Fuhrer W, Schilling W, Rigollier P, Yamaguchi Y, Cumin F, Baum HP, Schnell CR, Herold P, Mah R, Jensen C, O'Brien E, Stanton A, Bedigian MP. Structure-based design of aliskiren, a novel orally effective renin inhibitor. Biochem Biophys Res Commun. 2003;308:698–705. Published online Epub Sep 5

    Article  CAS  PubMed  Google Scholar 

  20. Weibel EK, Hadvary P, Hochuli E, Kupfer E, Lengsfeld H. Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. I. Producing organism, fermentation, isolation and biological activity. J Antibiot (Tokyo). 1987;40:1081–5. Published online Epub Aug

    Article  CAS  Google Scholar 

  21. Vauquelin G, Fierens F, Van Liefde I. Long-lasting angiotensin type 1 receptor binding and protection by candesartan: comparison with other biphenyl-tetrazole sartans. J Hypertens Suppl. 2006;24:S23–30. doi:10.1097/01.hjh.0000220403.61493.18. Published online Epub Mar

    Article  CAS  PubMed  Google Scholar 

  22. Issa JP, Kantarjian HM, Kirkpatrick P. Azacitidine. Nat Rev Drug Discov. 2005;4:275–6. doi:10.1038/nrd1698. Published online Epub Apr

    Article  CAS  PubMed  Google Scholar 

  23. Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL, Christopoulos A, Sexton PM, Miller KJ, Spedding M, Mailman RB. Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther. 2007;320:1–13. doi:10.1124/jpet.106.104463. Published online Epub Jan

    Article  CAS  PubMed  Google Scholar 

  24. Kenakin T, Miller LJ. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev. 2010;62:265–304. doi:10.1124/pr.108.000992. Published online Epub June

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Swinney DC. Biochemical mechanisms of new molecular entities (NMEs) approved by United States FDA during 2001–2004: mechanisms leading to optimal efficacy and safety. Curr Top Med Chem. 2006;6:461–78.

    Article  CAS  PubMed  Google Scholar 

  26. Wijayaratne AL, McDonnell DP. The human estrogen receptor-alpha is a ubiquitinated protein whose stability is affected differentially by agonists, antagonists, and selective estrogen receptor modulators. J Biol Chem. 2001;276:35684–92. doi:10.1074/jbc.M101097200. Published online Epub Sep 21

    Article  CAS  PubMed  Google Scholar 

  27. Martel RR, Klicius J, Galet S. Inhibition of the immune response by rapamycin, a new antifungal antibiotic. Can J Physiol Pharmacol. 1977;55:48–51. Published online Epub Feb

    Article  CAS  PubMed  Google Scholar 

  28. Bartizal K, Abruzzo G, Trainor C, Krupa D, Nollstadt K, Schmatz D, Schwartz R, Hammond M, Balkovec J, Vanmiddlesworth F. In vitro antifungal activities and in vivo efficacies of 1,3-beta-d-glucan synthesis inhibitors L-671,329, L-646,991, tetrahydroechinocandin B, and L-687,781, a papulacandin. Antimicrob Agents Chemother. 1992;36:1648–57. Published online Epub Aug

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lipton SA. Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov. 2006;5:160–70. doi:10.1038/nrd1958. Published online Epub Feb

    Article  CAS  PubMed  Google Scholar 

  30. Lipton SA. Pathologically activated therapeutics for neuroprotection. Nat Rev Neurosci. 2007;8:803–8. doi:10.1038/nrn2229. Published online Epub Oct

    Article  CAS  PubMed  Google Scholar 

  31. Uchikawa O, Fukatsu K, Tokunoh R, Kawada M, Matsumoto K, Imai Y, Hinuma S, Kato K, Nishikawa H, Hirai K, Miyamoto M, Ohkawa S. Synthesis of a novel series of tricyclic indan derivatives as melatonin receptor agonists. J Med Chem. 2002;45:4222–39. Published online Epub Sep 12

    Article  CAS  PubMed  Google Scholar 

  32. Burris KD, Molski TF, Xu C, Ryan E, Tottori K, Kikuchi T, Yocca FD, Molinoff PB. Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther. 2002;302:381–9. Published online Epub July

    Article  CAS  PubMed  Google Scholar 

  33. Pulvirenti L, Koob GF. Dopamine receptor agonists, partial agonists and psychostimulant addiction. Trends Pharmacol Sci. 1994;15:374–9. Published online Epub Oct

    Article  CAS  PubMed  Google Scholar 

  34. Coe JW, Brooks PR, Vetelino MG, Wirtz MC, Arnold EP, Huang J, Sands SB, Davis TI, Lebel LA, Fox CB, Shrikhande A, Heym JH, Schaeffer E, Rollema H, Lu Y, Mansbach RS, Chambers LK, Rovetti CC, Schulz DW, Tingley 3rd FD, O'Neill BT. Varenicline: an alpha4beta2 nicotinic receptor partial agonist for smoking cessation. J Med Chem. 2005;48:3474–7. doi:10.1021/jm050069n. Published online Epub May 19

    Article  CAS  PubMed  Google Scholar 

  35. Nemeth EF. Misconceptions about calcimimetics. Ann N Y Acad Sci. 2006;1068:471–6. doi:10.1196/annals.1346.044. Published online Epub Apr

    Article  CAS  PubMed  Google Scholar 

  36. Hemphill A, Mueller J, Esposito M. Nitazoxanide, a broad-spectrum thiazolide anti-infective agent for the treatment of gastrointestinal infections. Expert Opin Pharmacother. 2006;7:953–64. doi:10.1517/14656566.7.7.953. Published online Epub May

    Article  CAS  PubMed  Google Scholar 

  37. Rossignol JF, Maisonneuve H. Nitazoxanide in the treatment of Taenia saginata and Hymenolepis nana infections. Am J Trop Med Hyg. 1984;33:511–2. Published online Epub May

    CAS  PubMed  Google Scholar 

  38. Lindsay MA. Target discovery. Nat Rev Drug Discov. 2003;2:831–8. doi:10.1038/nrd1202. Published online Epub Oct

    Article  CAS  PubMed  Google Scholar 

  39. Imming P, Sinning C, Meyer A. Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006;5:821–34. doi:10.1038/nrd2132. Published online Epub Oct

    Article  CAS  PubMed  Google Scholar 

  40. Williams M. Systems and integrative biology as alternative guises for pharmacology: prime time for an iPharm concept? Biochem Pharmacol. 2005;70:1707–16. doi:10.1016/j.bcp.2005.08.019. Published online Epub Dec 5

    Article  CAS  PubMed  Google Scholar 

  41. Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov. 2011;10:507–19. doi:10.1038/nrd3480. Published online Epub July

    Article  CAS  PubMed  Google Scholar 

  42. Plenge RM, Scolnick EM, Altshuler D. Validating therapeutic targets through human genetics. Nat Rev Drug Discov. 2013;12:581–94. doi:10.1038/nrd4051. Published online Epub Aug

    Article  CAS  PubMed  Google Scholar 

  43. Lee JA, Uhlik MT, Moxham CM, Tomandl D, Sall DJ. Modern phenotypic drug discovery is a viable, neoclassic pharma strategy. J Med Chem. 2012;55:4527–38. doi:10.1021/jm201649s. Published online Epub May 24

    Article  CAS  PubMed  Google Scholar 

  44. Lee JA, Berg EL. Neoclassic drug discovery: the case for lead generation using phenotypic and functional approaches. J Biomol Screen. 2013;18:1143–55. doi:10.1177/1087057113506118. Published online Epub Dec

    Article  CAS  PubMed  Google Scholar 

  45. Hitchings G Jr. Selective inhibitors of dihydrofolate reductase. 1988. http://www.nobelprize.org/nobel_prizes/medicine/laureates/1988/hitchings-lecture.pdf

  46. Swinney DC, Xia S. The discovery of medicines for rare diseases. Future Med Chem. 2014;6:987–1002. doi:10.4155/fmc.14.65. Published online Epub June

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Swinney DC. Phenotypic vs. target-based drug discovery for first-in-class medicines. Clin Pharmacol Ther. 2013;93:299–301. doi:10.1038/clpt.2012.236. Published online Epub Apr

    Article  CAS  PubMed  Google Scholar 

  48. Moffat JG, Rudolph J, Bailey D. Phenotypic screening in cancer drug discovery—past, present and future. Nat Rev Drug Discov. 2014;13:588–602. doi:10.1038/nrd4366. Published online Epub Aug

    Article  CAS  PubMed  Google Scholar 

  49. Eder J, Sedrani R, Wiesmann C. The discovery of first-in-class drugs: origins and evolution. Nat Rev Drug Discov. 2014;13:577–87. doi:10.1038/nrd4336. Published online Epub Aug

    Article  CAS  PubMed  Google Scholar 

  50. Moffat R, Guth U. Preserving fertility in patients undergoing treatment for breast cancer: current perspectives. Breast Cancer. 2014;6:93–101. doi:10.2147/BCTT.S47234

    PubMed  PubMed Central  Google Scholar 

  51. FDA approved drug products. http://www.accessdata.fda.gov/scripts/cder/daf/

  52. European Lead Factory. https://www.europeanleadfactory.eu/

  53. Peterson MC, Riggs MM. FDA advisory meeting clinical pharmacology review utilizes a quantitative systems pharmacology (QSP) model: a watershed moment? CPT Pharmacometrics Syst Pharmacol. 2015;4:e00020. doi:10.1002/psp4.20. Published online Epub Mar

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Selen A, Dickinson PA, Mullertz A, Crison JR, Mistry HB, Cruanes MT, Martinez MN, Lennernas H, Wigal TL, Swinney DC, Polli JE, Serajuddin AT, Cook JA, Dressman JB. The biopharmaceutics risk assessment roadmap for optimizing clinical drug product performance. J Pharm Sci. 2014;103:3377–97. doi:10.1002/jps.24162.. Published online Epub Nov

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Swinney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Swinney, D.C. (2017). Pharmaceutical Industry Performance. In: Bhattachar, S., Morrison, J., Mudra, D., Bender, D. (eds) Translating Molecules into Medicines. AAPS Advances in the Pharmaceutical Sciences Series, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-50042-3_1

Download citation

Publish with us

Policies and ethics