Skip to main content

Interacting particle systems

  • Chapter
  • First Online:
Stochastic Modeling

Part of the book series: Universitext ((UTX))

  • 5248 Accesses

Abstract

Most mathematical models introduced in the life and social sciences literature that describe inherently spatial phenomena of interacting populations consist of systems of ordinary differential equations or stochastic counterparts assuming global interactions such as the logistic growth process and the Moran model. These models, however, leave out any spatial structure, while past research has identified the spatial component as an important factor in how communities are shaped, and spatial models can result in predictions that differ from nonspatial models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Clifford and A. Sudbury. A model for spatial conflict. Biometrika, 60:581–588, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. L. Dobrušin. Markov processes with a large number of locally interacting components: Existence of a limit process and its ergodicity. Problemy Peredači Informacii, 7(2):70–87, 1971.

    MathSciNet  Google Scholar 

  3. R. L. Dobrušin. Markov processes with a large number of locally interacting components: The invertible case and certain generalizations. Problemy Peredači Informacii, 7(3):57–66, 1971.

    MathSciNet  Google Scholar 

  4. R. Durrett. Ten lectures on particle systems. In Lectures on probability theory (Saint-Flour, 1993), volume 1608 of Lecture Notes in Math., pages 97–201. Springer-Verlag, Berlin, 1995.

    Google Scholar 

  5. T. E. Harris. Nearest-neighbor Markov interaction processes on multidimensional lattices. Adv. Math., 9:66–89, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  6. T. E. Harris. Contact interactions on a lattice. Ann. Prob., 2:969–988, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. A. Holley and T. M. Liggett. Ergodic theorems for weakly interacting infinite systems and the voter model. Ann. Prob., 3(4):643–663, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  8. T. M. Liggett. Interacting particle systems, volume 276 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1985.

    Google Scholar 

  9. T. M. Liggett. Stochastic interacting systems: contact, voter, and exclusion processes, volume 324 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999.

    Google Scholar 

  10. Frank Spitzer. Interaction of Markov processes. Adv. Math., 5:246–290 (1970), 1970.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lanchier, N. (2017). Interacting particle systems. In: Stochastic Modeling. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-50038-6_14

Download citation

Publish with us

Policies and ethics