Skip to main content

Part of the book series: Topics in Biodiversity and Conservation ((TOBC,volume 17))

  • 703 Accesses

Abstract

Monitoring phenotypic variation in natural history traits that can be directly obtained from studbook data is explored in this chapter. Phenotypic variances in lifespan, age at first breeding, inter–birth interval, litter size, breeding season and fitness, as observed in the captive populations of Chinese and Nepalese red pandas, are explored. The components of phenotypic variance and concepts of heritability and repeatability are described. Repeatability in different traits of red crowned cranes, red pandas and snow leopards is presented and discussed. Mid–parent and single parent regressions to estimate heritability (h 2) are described and illustrated with parturition date in red panda subspecies. Methods to handle unequal family sizes in regression and to adjust for assortative matings are explained and illustrated with the trait “fitness” in red pandas. Assumptions in linear regression regarding independent data and normal distribution of trait data are discussed, as are effects of outliers on results. The Residual or Restricted Maximum Likelihood (REML) and Markov chain Monte Carlo (MCMC) implementations of the “animal model” to estimate heritability are briefly described. Parturition date in Nepalese red pandas is used to demonstrate these methods. The last section explores the use of estimated breeding values (EBVs) in monitoring phenotypic variation. Litter size in maternal generation groups of African wild dogs is used as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The modified algorithm by R. L. Quaas is used to compute inbreeding coefficients only.

  2. 2.

    The minimum reliability equals heritability when only a single record for an individual is available.

References

  • Åkesson M, Bensch S, Hasselquist D, Tarka M, Hansson B (2008) Estimating heritabilities and genetic correlations: comparing the ‘animal model’ with parent–offspring regression using data from a natural population. PLoS ONE 3(3):e1739

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnold SJ (1994) Multivariate inheritance and evolution: a review of concepts. In: Boake CR (ed) Quantitative genetic studies of behavioral evolution. University of Chicago Press, Chicago, pp 17–48

    Google Scholar 

  • Arnold SJ (1995) Monitoring quantitative genetic variation and evolution in captive populations. In: Ballou et al. (1995), pp 295–317

    Google Scholar 

  • Ballou JD, Gilpin M, Foose TJ (eds) (1995) Population management for survival and recovery: analytical methods and strategies in small population conservation. Methods and cases in conservation science series. Columbia University Press, New York

    Google Scholar 

  • Bates D, Vazquez AI (2014) pedigreemm: pedigree-based mixed-effects models. http://CRAN.R-project.org/package=pedigreemm, R package version 0.3-3

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed–effects models using Eigen and S4. http://CRAN.R-project.org/package=lme4, R package version 1.1-7

    Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc Ser B (Methodol) 26(2):211–252

    Google Scholar 

  • Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65(1):23–35

    Article  Google Scholar 

  • Chargé R, Sorci G, Saint Jalme M, Lesobre L, Hingrat Y, Lacroix F, Teplitsky C (2014) Does recognized genetic management in supportive breeding prevent genetic changes in life–history traits? Evol Appl 7(5):521–532

    Article  PubMed  PubMed Central  Google Scholar 

  • Charmantier A, Garant D, Kruuk LEB (eds) (2014) Quantitative genetics in the wild. Oxford University Press, Oxford

    Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, Chichester

    Book  Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New York

    Google Scholar 

  • de Villemereuil P, Gimenez O, Doligez B (2013) Comparing parent—offspring regression with frequentist and Bayesian animal models to estimate heritability in wild populations: a simulation study for Gaussian and binary traits. Methods Ecol Evol 4(3):260–275

    Article  Google Scholar 

  • Dohm MR (2002) Repeatability estimates do not always set an upper limit to heritability. Funct Ecol 16(2):273–280

    Article  Google Scholar 

  • Falconer DS (1960) Introduction to quantitative genetics, 1st edn. Longman, London

    Google Scholar 

  • Fisher RA (1918) The correlation relatives on the supposition of Mendelian inheritance. Trans R Soc Edinb 52:399–433

    Article  Google Scholar 

  • Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage, Thousand Oaks

    Google Scholar 

  • Frankham R (1999) Quantitative genetics in conservation biology. Genet Res 74:237–244

    Article  CAS  PubMed  Google Scholar 

  • Frankham R (2008) Genetic adaptation to captivity in species conservation programs. Mol Ecol 17(1):325–333

    Article  PubMed  Google Scholar 

  • Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33(2):1–22

    Article  Google Scholar 

  • Henderson CR (1973) Sire evaluation and genetic trends. J Anim Sci 1973:10–41

    Google Scholar 

  • Henderson CR (1976) A simple method for computing the inverse of a numerator relationship matrix used in prediction of breeding values. Biometrics 32:69–83

    Article  Google Scholar 

  • Houle D (1992) Comparing evolvability and variability of quantitative traits. Genetics 130(1):195–204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54(2):187–211

    Article  Google Scholar 

  • Ibáñez B, Cervantes I, Gutiérrez JP, Goyache F, Moreno E (2014) Estimates of direct and indirect effects for early juvenile survival in captive populations maintained for conservation purposes: the case of Cuvier’s gazelle. Ecol Evol 4(21):4117–4129

    Article  PubMed  PubMed Central  Google Scholar 

  • Keller LF, Grant PR, Grant R, Petren K (2001) Heritability of morphological traits in Darwin’s finches: misidentified paternity and maternal effects. Heredity 87(3):325–336

    Article  CAS  PubMed  Google Scholar 

  • Kempthorne O, Tandon OB (1953) The estimation of heritability by regression of offspring on parent. Biometrics 9(1):90–100

    Article  Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626

    Article  CAS  PubMed  Google Scholar 

  • Kruuk LEB (2004) Estimating genetic parameters in natural populations using the ‘animal model’. Philos Trans R Soc B 359:873–890

    Article  Google Scholar 

  • Kruuk LEB, Hadfield JD (2007) How to separate genetic and environmental causes of similarity between relatives. J Evol Biol 20(5):1890–1903

    Article  CAS  PubMed  Google Scholar 

  • Kruuk LEB, Clutton–Brock TH, Slate J, Pemberton JM, Brotherstone S, Guinness FE (2000) Heritability of fitness in a wild mammal population. Proc Natl Acad Sci USA 97(2):698–703

    Google Scholar 

  • Kruuk LEB, Charmantier A, Garant D (2014) The study of quantitative genetics in wild populations. In: Charmantier et al. (2014), pp 1–15

    Google Scholar 

  • Lande R (1995) Breeding plans for small populations based on the dynamics of quantitative genetic variance. In: Ballou et al. (1995), pp 318–340

    Google Scholar 

  • Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk 104(1):116–121

    Article  Google Scholar 

  • McAdam A, Garant D, Wilson AJ (2014) The effect of others’ genes: maternal and other indirect effects. In: Charmantier et al. (2014), pp 84–103

    Google Scholar 

  • McComb B, Zuckerberg B, Vesely D, Jordan C (2010) Monitoring animal populations and their habitats. CRC Press, Boca Raton

    Book  Google Scholar 

  • McDougall PT, Réale D, Sol D, Reader SM (2006) Wildlife conservation and animal temperament: causes and consequences of evolutionary change for captive, reintroduced and wild populations. Anim Conserv 9(1):39–48

    Article  Google Scholar 

  • Morrisey MB, de Villemereuil P, Doligez B, Gimenez O (2014) Bayesian approaches to the quantitative genetic analysis of wild populations. In: Charmantier et al. (2014), pp 228–253

    Google Scholar 

  • Mrode RA (2000) Linear models for the prediction of animal breeding values. CAB International, Wallingford

    Google Scholar 

  • Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non–Gaussian data: a practical guide for biologists. Biol Rev 85(4):935–956

    PubMed  Google Scholar 

  • Pelletier F, Réale D, Watters J, Boakes EH, Garant D (2009) Value of captive populations for quantitative genetics research. Trends Ecol Evol 24(5):263–270

    Article  PubMed  Google Scholar 

  • Plummer M, Best N, Cowles K, Vines K (2006) Coda: convergence diagnosis and output analysis for mcmc. R News 6(1):7–11. http://CRAN.R-project.org/doc/Rnews/

    Google Scholar 

  • Postma E (2006) Implications of the difference between true and predicted breeding values for the study of natural selection and micro–evolution. J Evol Biol 19(2):309–320

    Article  CAS  PubMed  Google Scholar 

  • Postma E (2014) Four decades of estimating heritabilities in wild vertebrate populations: improved methods, more data, better estimates? In: Charmantier et al. (2014), pp 16–33

    Google Scholar 

  • Quaas RL (1976) Computing the diagonal elements and inverse of a large numerator relationship matrix. Biometrics 32:949–953

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

    Google Scholar 

  • Réale D, McAdam AG, Boutin S, Berteaux D (2003) Genetic and plastic responses of a northern mammal to climate change. Proc R Soc Lond B Biol Sci 270(1515):591–596

    Article  Google Scholar 

  • Reeve ECR (1955) The variance of the genetic correlation coefficient. Biometrics 11(3):357–374

    Article  Google Scholar 

  • Ricklefs RE, Cadena CD (2008) Heritability of longevity in captive populations of nondomesticated mammals and birds. J Geront Ser A Biol Sci Med Sci 63(5):435–446

    Article  Google Scholar 

  • Schielzeth H, Nakagawa S (2013) rptR: repeatability for Gaussian and non-Gaussian data. http://R-Forge.R-project.org/projects/rptr/, R package version 0.6.405/r52

  • Sokal RR, Rohlf FJ (2012) Biometry, 4th edn. W.H. Freeman and Company, New York

    Google Scholar 

  • Stopher KV, Walling CA, Morris A, Guinness FE, Clutton-Brock THC, Pemberton JM, Nussey DH (2012) Shared spatial effects on quantitative genetic parameters: accounting for spatial autocorrelation and home range overlap reduces estimates of heritability in wild red deer. Evolution 66(8):2411–2426

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson R, Brotherstone S, White IMS (2005) Estimation of quantitative genetic parameters. Philos Trans R Soc Lond 360:1469–1477each sex. This method requires

    Google Scholar 

  • Tukey JW (1977) Exploratory data analysis. Behavioural science: quantitative methods. Addison–Wesley, Reading

    Google Scholar 

  • van der Jeugd HP, McCleery R (2002) Effects of spatial autocorrelation, natal philopatry and phenotypic plasticity on the heritability of laying date. J Evol Biol 15(3):380–387

    Article  Google Scholar 

  • Vazquez AI, Bates DM, Rosa GJM, Gianola D, Weigel KA (2010) Technical note: an R package for fitting generalized linear mixed models in animal breeding. J Anim Sci 88(2):497–504

    Article  CAS  PubMed  Google Scholar 

  • Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era – concepts and misconceptions. Nat Rev Genet 5(4):255–266

    Article  Google Scholar 

  • Vittinghoff E, Glidden DV, Shiboski SC, McCulloch CE (2005) Regression methods in biostatistics. Statistics for biology and health. Springer, New York

    Google Scholar 

  • Weis AE (2005) Direct and indirect assortative mating: a multivariate approach to plant flowering schedules. J Evol Biol 18(3):536–546

    Article  PubMed  Google Scholar 

  • Wilson AJ, Pemberton JM, Pilkington JG, Clutton–Brock TH, Coltman DW, Kruuk LEB (2007) Quantitative genetics of growth and cryptic evolution of body size in an island population. Evol Ecol 21(3):337–356

    Google Scholar 

  • Wilson AJ, Réale D, Clements MN, Morrissey MM, Postma E, Walling CA, Kruuk LEB, Nussey DH (2010) An ecologist’s guide to the animal model. J Anim Ecol 79(1):13–26

    Article  PubMed  Google Scholar 

  • Wilson AJ, Réale D, Clements MN, Morrissey MM, Postma E, Walling CA, Kruuk LEB, Nussey DH (2011) An ecologist’s guide to the animal model – erratum. J Anim Ecol 80:1109

    Article  Google Scholar 

  • Wolak ME, Fairbairn DJ, Paulsen YR (2012) Guidelines for estimating repeatability. Methods Ecol Evol 3(1):129–137

    Article  Google Scholar 

  • Wright S (1921a) Systems of mating. III. Assortative mating based on somatic resemblance. Genetics 6(2):144–161

    CAS  PubMed  Google Scholar 

  • Wright S (1921b) Systems of mating. IV. The effects of selection. Genetics 6(2):162–166

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Princée, F.P.G. (2016). Quantitative Genetics. In: Exploring Studbooks for Wildlife Management and Conservation. Topics in Biodiversity and Conservation, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-50032-4_16

Download citation

Publish with us

Policies and ethics