Skip to main content

Development, Validation, and Application of a Competence Model for Mathematical Problem Solving by Using and Translating Representations of Functions

  • Chapter
  • First Online:
Competence Assessment in Education

Abstract

In mathematics education, the student’s ability to translate between different representations of functions is regarded as a key competence for mastering situations that can be described by mathematical functions. Students are supposed to interpret common representations like numerical tables (N), function graphs (G), verbally or pictorially represented situations (S), and algebraic expressions (A). In a multi-step project (1) a theoretical competence model was constructed by identifying key processes and key dimensions and corresponding item pools, (2) different psychometric models assuming theory-based concurrent competence structures were tested empirically, and (3) finally, a computerized adaptive assessment tool was developed and applied in school practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, R. J., Wilson, M., & Wang, W. (1997). The multidimensional random coefficients multinomial logit model. Applied Psychological Measurement, 21, 1–23. doi:10.1177/0146621697211001.

    Article  Google Scholar 

  • Anderson, L. W., & Krathwohl, D. R. (Eds.). (2001). A taxonomy for learning, teaching, and asssessing. A revision of Bloom's taxonomy of educational objectives. New York, NY: Addison-Wesley.

    Google Scholar 

  • Bayrhuber, M., Leuders, T., Bruder, R., & Wirtz, M. (2010). Erfassung und Modellierung mathematischer Kompetenz: Aufdeckung kognitiver Strukturen anhand des Wechsels von Darstellungs- und Repräsentationsform [Capturing and modesling mathematical competencies: Revealing cognitive structures by means of change of representation]. Zeitschrift für Pädagogik, Beiheft, 56, 28–39.

    Google Scholar 

  • Bossé, M. J., Adu-Gyamfi, K., & Cheetham, M. R. (2011). Assessing the difficulty of mathematical translations: synthesizing the literature and novel findings. International Electronic Journal of Mathematics Education, 6, 113–133.

    Google Scholar 

  • Bruder, R., & Brückner, A. (1989). Zur Beschreibung von Schülertätigkeiten im Mathematikunterricht: Ein allgemeiner Ansatz [On the decription of students’ actions: A general approach]. Pädagogische Forschung, 30(6), 72–82.

    Google Scholar 

  • Elia, I., Panaoura, A., Gagatsis, A., Gravvani, K., & Spyrou, P. (2008). Exploring different aspects of the understanding of function: Toward a four-facet model. Canadian Journal of Science, Mathematics, and Technology Education, 8, 49–69. doi:10.1080/14926150802152277.

    Article  Google Scholar 

  • Frey, A., & Seitz, N.-N. (2009). Multidimensional adaptive testing in educational and psychological measurement: Current state and future challenges. Studies in Educational Evaluation, 35, 89–94. doi:10.1016/j.stueduc.2009.10.007.

    Article  Google Scholar 

  • Frey, A., Kroehne, U., Seitz, N.-N., Born, S. (2017). Multidimensional adaptive measurement of competencies. In D. Leutner, J. Fleischer, J. Grünkorn, E. Klieme, Competence assessment in education: Research, models and instruments (pp. 369–388). Berlin: Springer.

    Google Scholar 

  • Gonzalez, E., & Rutkowski, L. (2010). Principles of multiple matrix booklet designs and parameter recovery in large-scale assessments. IERI Monograph Series. Issues and Methodologies in Large-Scale Assessments, 3, 125–156.

    Google Scholar 

  • Hartig, J. (2007). Skalierung und Definition von Kompetenzniveaus [Scaling and defining competence levels]. In B. Beck & E. Klieme (Eds.), Sprachliche Kompetenzen. Konzepte und Messung. DESI-Studie (pp. 83–99). Weinheim: Beltz.

    Google Scholar 

  • Hartig, J., Klieme, E., & Leutner, D. (Eds.). (2008). Assessment of competencies in educational contexts. Göttingen: Hogrefe.

    Google Scholar 

  • Hattikudur, S., Prather, R. W., Asquith, P., Alibali, M. W., Knuth, E. J., & Nathan, M. (2012). Constructing graphical representations: Middle schoolers’ intuitions and developing knowledge about slope and Y-intercept. School Science and Mathematics, 112, 230–240. doi:10.1111/j.1949-8594.2012.00138.x.

    Article  Google Scholar 

  • Henning, J., Naccarella, D., Kröhne, U., Leuders, T., Bruder, R., & Wirtz, M. (2013, August/September). Development and validation of a computerized item pool as a prerequisite for adaptive testing. Paper presented at the 15th Biennial Conference of the European Association for Research on Learning and Instruction (EARLI), Munich (Germany).

    Google Scholar 

  • Janvier, C. (1987). Translation processes in mathematics education. In C. Janvier (Ed.), Problems of representation in mathematics learning and problem solving (pp. 27–32). Hillsdale: Erlbaum.

    Google Scholar 

  • Ketterlin-Geller, L. R., & Yovanoff, P. (2009). Diagnostic assessments in mathematics to support instructional decision making. Practical Assessment, Research and Evaluation, 14, 1–11.

    Google Scholar 

  • Kiefer, T., Robitzsch, A., Wu, M. (2014). TAM: Test Analysis Modules. R package version 1.0–1.

    Google Scholar 

  • Klieme, E., & Leutner, D. (2006). Kompetenzmodelle zur Erfassung individueller Lernergebnisse und zur Bilanzierung von Bildungsprozessen: Beschreibung eines neu eingerichteten Schwerpunktprogramms der DFG [Competence models for assessing individual learning outcomes and evaluating educational processes]. Zeitschrift für Pädagogik, 52, 876–903.

    Google Scholar 

  • KMK (Standing Conference of the Ministers of Education and Cultural Affairs of the States in the Federal Republic of Germany). (Ed.). (2003). Bildungsstandards im Fach Mathematik für den Mittleren Schulabschluss. Beschluss vom 4.12.2003 [Education standards in mathematics for the secondary school qualification: Resolution approved by the Standing Conference on 4 December 2003]. Münster: Luchterhand.

    Google Scholar 

  • Kroehne, U., & Frey, A. (2011, October). Multidimensional adaptive testing environment (MATE): Software for the implementation of computerized adaptive tests. Paper presented at the IACAT conference, Pacific Grove, CA.

    Google Scholar 

  • Kroehne, U., & Frey, A. (2013). Multidimensional adaptive testing environment (MATE)—Manual. Frankfurt: German Institute for International Educational Research.

    Google Scholar 

  • Lee, J., & Corter, J. E. (2011). Diagnosis of subtraction bugs using Bayesian networks. Applied Psychological Measurement, 35, 27–47. doi:10.1177/0146621610377079.

    Article  Google Scholar 

  • Leinhardt, G., Zaslavsky, O., & Stein, M. S. (1990). Functions, graphs and graphing: Tasks, learning and teaching. Review of Educational Research, 66, 1–64. doi:10.2307/1170224.

    Article  Google Scholar 

  • Lesh, R., Post, T., & Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 33–40). Hillsdale: Erlbaum.

    Google Scholar 

  • Leuders, T. (2014). Modellierungen mathematischer Kompetenzen: Kriterien für eine Validitätsprüfung aus fachdidaktischer Sicht [Modeling of mathematical competencies: Criteria for a validity check]. Journal für Mathematik-Didaktik, 35, 7–48. doi:10.1007/s13138-013-0060-3.

    Article  Google Scholar 

  • Leuders, T., & Sodian., B. (2013). Inwiefern sind Kompetenzmodelle dazu geeignet kognitive Prozesse von Lernenden zu beschreiben [To what extent can competence models describe cognitive processes]? Zeitschrift für Erziehungswissenschaft, 16(Supplement 1), 27–33. doi:10.1007/s11618-013-0381-5.

    Article  Google Scholar 

  • Leutner, D., Fleischer, J., Grünkorn, J., Klieme, E. (2017). Competence assessment in education: An introduction. In D. Leutner, J. Fleischer, J. Grünkorn, E. Klieme (Eds.), Competence assessment in education: Research, models and instruments (pp. 1–6). Berlin: Springer.

    Google Scholar 

  • Messick, S. (1995). Validity of psychological assessment: Validation of inferences from persons’ responses and performances as scientific inquiry into score meaning. American Psychologist, 50, 741–749. doi:10.1037/0003-066X.50.9.741.

    Article  Google Scholar 

  • Niss, M. (2003). Mathematical competencies and the learning of mathematics: the Danish KOM project. In: A. Gagatsis, & S. Papastavridis (Eds.), 3rd Mediterranean Conference on Mathematical Education. (pp. 115–123). Athens: Hellenic Mathematical Society.

    Google Scholar 

  • Nitsch, R., Fredebohm, A., Bruder, R., Kelava, T., Naccarella, D., Leuders, T., & Wirtz, M. (2014). Students’ competencies in working with functions in secondary mathematics education — Empirical examination of a competence structure model. International Journal of Science and Mathematics Education. doi:10.1007/s10763-013-9496-7.

    Google Scholar 

  • OECD (Organisation for Economic Co-operation and Development). (1999). Measuring student knowledge and skills: A new framework for assessment. Paris: Author.

    Google Scholar 

  • Pellegrino, J., Chudowsky, N., & Glaser, R. (Eds.). (2001). Knowing what students know: The science and design of educational assessment. Washington, DC: National Academy Press.

    Google Scholar 

  • Renkl, A. (2012). Modellierung von Kompetenzen oder von interindividuellen Kompetenzunterschieden: Ein unterschätzter Unterschied [Modeling of competencies or interindividual differences: An underestimated difference]? Psychologische Rundschau, 63, 50–53.

    Article  Google Scholar 

  • Rupp, A. A., & Mislevy, R. J. (2007). Cognitive foundations of structured item response theory models. In J. Leighton & M. Gierl (Eds.), Cognitive diagnostic assessment in education: Theory and applications (pp. 205–241). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Rupp, A., Templin, J., & Henson, R. (2010). Diagnostic measurement: Theory, methods, and applications. New York, NY: Guilford.

    Google Scholar 

  • Segall, D. O. (1996). Multidimensional adaptive testing. Psychometrika, 61, 331–354.

    Article  Google Scholar 

  • Südkamp, A., Kaiser, J., & Möller, J. (2012). Accuracy of teachers’ judgments of students’ academic achievement: A meta-analysis. Journal of Educational Psychology, 104, 743–762. doi:10.1037/a0027627.

    Article  Google Scholar 

  • Swan, M. (1985). The language of functions and graphs. Nottingham: Shell Centre for Mathematical Education.

    Google Scholar 

  • Veldkamp, B. P., & van der Linden, W. J. (2010). Designing item pools for computerized adaptive testing. In W. J. van der Linden & C. A. W. Glas (Eds.), Elements of adaptive testing (pp. 231–245). New York: Springer.

    Google Scholar 

  • Vollrath, H. J. (1989). Funktionales Denken [Functional thinking]. Journal für Mathematikdidaktik, 1, 3–37.

    Article  Google Scholar 

  • Ware, J. E., Gandek, B., Sinclair, S. J., & Bjorner, J. B. (2005). Item response theory and computerized adaptive testing: Implications for outcomes measurement in rehabilitation. Rehabilitation Psychology, 50, 71–78.

    Article  Google Scholar 

  • Weinert, F. E. (2001). Concept of competence: A conceptual clarification. In D. Rychen & L. Salganik (Eds.), Defining and selecting key competencies (pp. 45–66). Seattle: Hogrefe.

    Google Scholar 

  • Weiss, J. (2004). Computerized adaptive testing for effective and efficient measurement in counseling and education. Measurement and Evaluation in Counseling and Development, 37, 70–84.

    Google Scholar 

  • Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah: Erlbaum.

    Google Scholar 

  • Wilson, M., & Sloane, K. (2000). From principles to practice: An embedded assessment system. Applied Measurement in Education, 13, 181–208.

    Article  Google Scholar 

Download references

Acknowledgments

The preparation of this chapter was supported by grants LE 2335/1, BR 2066/4, and WI 3210/2 from the German Research Foundation (DFG) in the Priority Program “Competence Models for Assessing Individual Learning Outcomes and Evaluating Educational Processes” (SPP 1293).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Leuders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Leuders, T. et al. (2017). Development, Validation, and Application of a Competence Model for Mathematical Problem Solving by Using and Translating Representations of Functions. In: Leutner, D., Fleischer, J., Grünkorn, J., Klieme, E. (eds) Competence Assessment in Education. Methodology of Educational Measurement and Assessment. Springer, Cham. https://doi.org/10.1007/978-3-319-50030-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50030-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50028-7

  • Online ISBN: 978-3-319-50030-0

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics