Skip to main content

A Review on Attractive–Repulsive Hydrodynamics for Consensus in Collective Behavior

  • Chapter
  • First Online:
Book cover Active Particles, Volume 1

Abstract

This survey summarizes and illustrates the main qualitative properties of hydrodynamics models for collective behavior. These models include a velocity consensus term together with attractive–repulsive potentials leading to non-trivial flock profiles. The connection between the underlying particle systems and the swarming hydrodynamic equations is performed through kinetic theory modeling arguments. We focus on Lagrangian schemes for the hydrodynamic systems showing the different qualitative behaviors of the systems and its capability of keeping properties of the original particle models. We illustrate the known results concerning large-time profiles and blowup in finite time of the hydrodynamic systems to validate the numerical scheme. We finally explore the unknown situations making use of the numerical scheme showcasing a number of conjectures based on the numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Ahn, H. Choi, S.-Y. Ha, and H. Lee, On the collision avoiding initial-configurations to the Cucker-Smale type flocking models, Comm. Math. Sci., 10:625–643, 2012.

    Google Scholar 

  2. M. Agueh, R. Illner, and A. Richardson, Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type, Kinetic and Related Models 4:1–16, 2011.

    Google Scholar 

  3. G. Albi, D. Balagué, J. A. Carrillo, J. von Brecht, Stability analysis of flock and mill rings for second order models in swarming, SIAM J. Appl. Math., 74:794-818, 2014.

    Google Scholar 

  4. G. Albi, L. Pareschi, Modelling self-organized systems interacting with few individuals: from microscopic to macroscopic dynamics, Applied Math. Letters, 26:397–401, 2013.

    Google Scholar 

  5. I. Aoki, A Simulation Study on the Schooling Mechanism in Fish, Bull. Jap. Soc. Sci. Fisheries 48:1081–1088, 1982.

    Google Scholar 

  6. H.-O. Bae, Y.-P. Choi, S.-Y. Ha, and M.-J. Kang, Time-asymptotic interaction of flocking particles and incompressible viscous fluid, Nonlinearity 25:1155–1177, 2012.

    Google Scholar 

  7. H.-O. Bae, Y.-P. Choi, S.-Y. Ha, and M.-J. Kang, Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids, Disc. and Cont. Dyn. Sys. 34:4419–4458, 2014.

    Google Scholar 

  8. H.-O. Bae, Y.-P. Choi, S.-Y. Ha, and M.-J. Kang, Global existence of strong solution for the Cucker-Smale-Navier-Stokes system. J. Diff. Eqns. 257:2225–2255, 2014.

    Google Scholar 

  9. H.-O. Bae, Y.-P. Choi, S.-Y. Ha, and M.-J. Kang, Global existence of strong solutions to the Cucker-Smale-Stokes system, J. Math. Fluid Mech. 18:381–396, 2016.

    Google Scholar 

  10. D. Balagué, and J. A. Carrillo, Aggregation equation with growing at infinity attractive-repulsive potentials, Proceedings of the 13th International Conference on Hyperbolic Problems, Series in Contemporary Applied Mathematics CAM 17, Higher Education Press, 1:136–147, 2012.

    Google Scholar 

  11. D. Balagué, Carrillo, T. J. A., Laurent, and G. Raoul, Nonlocal interactions by repulsive-attractive potentials: radial ins/stability, Physica D, 260:5–25, 2013.

    Google Scholar 

  12. D. Balagué, Carrillo, T. J. A., Laurent, and G. Raoul, Dimensionality of Local Minimizers of the Interaction Energy, Arch. Rat. Mech. Anal., 209:1055–1088, 2013.

    Google Scholar 

  13. A. Barbaro, J. A. Cañizo, J. A. Carrillo, P. Degond, Phase Transitions in a kinetic flocking model of Cucker-Smale type, Multiscale Model. Simul. 14:1063–1088, 2016.

    Google Scholar 

  14. A. Barbaro, K. Taylor, P. F. Trethewey, L. Youseff, and B. Birnir, Discrete and continuous models of the dynamics of pelagic fish: application to the capelin, Math. and Computers in Simulation, 79:3397–3414, 2009.

    Google Scholar 

  15. N. Bellomo, C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Review 53:409–463, 2011.

    Google Scholar 

  16. A. J. Bernoff, C. M. Topaz, A primer of swarm equilibria, SIAM J. Appl. Dyn. Syst., 10:212–250, 2011.

    Google Scholar 

  17. A. L. Bertozzi, J. A. Carrillo, and T. Laurent, Blowup in multidimensional aggregation equations with mildly singular interaction kernels, Nonlinearity, 22:683–710, 2009.

    Google Scholar 

  18. A. L. Bertozzi, T. Kolokolnikov, H. Sun, D. Uminsky, J. von Brecht, Ring patterns and their bifurcations in a nonlocal model of biological swarms, Commun. Math. Sci., 13:955–985, 2015.

    Google Scholar 

  19. A. L. Bertozzi and T. Laurent, Finite-time blow-up of solutions of an aggregation equation in \({\mathbb{R}}^n\), Comm. Math. Phys., 274:717–735, 2007.

    Google Scholar 

  20. A. L. Bertozzi, T. Laurent, and J. Rosado, \(L^p\) theory for the multidimensional aggregation equation, Comm. Pure Appl. Math., 43:415–430, 2010.

    Google Scholar 

  21. A. L. Bertozzi, T. Laurent, and F. Léger, Aggregation and spreading via the newtonian potential: the dynamics of patch solutions, Mathematical Models and Methods in Applied Sciences, 22(supp01):1140005, 2012.

    Google Scholar 

  22. M. Bodnar, J.J.L. Velazquez, Friction dominated dynamics of interacting particles locally close to a crystallographic lattice, Math. Methods Appl. Sci., 36:1206–1228, 2013.

    Google Scholar 

  23. F. Bolley, J. A. Cañizo, and J. A. Carrillo Stochastic mean-field limit: non-Lipschitz forces & swarming, Math. Mod. Meth. Appl. Sci., 21:2179–2210, 2011.

    Google Scholar 

  24. M. Bostan, J. A. Carrillo, Asymptotic fixed-speed reduced dynamics for kinetic equations in swarming, Math. Models Methods Appl. Sci. 23:2353–2393, 2013.

    Google Scholar 

  25. W. Braun and K. Hepp, The Vlasov Dynamics and Its Fluctuations in the 1/N Limit of Interacting Classical Particles, Commun. Math. Phys., 56:101–113, 1977.

    Google Scholar 

  26. M. Burger, P. Markowich, and J. Pietschmann, Continuous limit of a crowd motion and herding model: Analysis and numerical simulations, Kinetic and Related Methods, 4:1025–1047, 2011.

    Google Scholar 

  27. S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau, Self-Organization in Biological Systems, Princeton University Press, 2003.

    Google Scholar 

  28. J.A. Cañizo, J.A. Carrillo, and J. Rosado, Collective Behavior of Animals: Swarming and Complex Patterns, Arbor, 186:1035–1049, 2010.

    Google Scholar 

  29. J.A. Cañizo, J.A. Carrillo, and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Mod. Meth. Appl. Sci., 21:515–539, 2011.

    Google Scholar 

  30. J. A. Carrillo, Y.-P. Choi, and M. Hauray, The derivation of swarming models: Mean-field limit and Wasserstein distances, Collective Dynamics from Bacteria to Crowds: An Excursion Through Modeling, Analysis and Simulation, Series: CISM International Centre for Mechanical Sciences, Springer, 533:1–45, 2014.

    Google Scholar 

  31. J. A. Carrillo, Y.-P. Choi, and M. Hauray, Local well-posedness of the generalized Cucker-Smale model with singular kernels, ESAIM Proc., 47:17–35, 2014.

    Google Scholar 

  32. J. A. Carrillo, Y.-P. Choi, M. Hauray, and S. Salem, Mean-field limit for collective behavior models with sharp sensitivity regions, to appear in J. Eur. Math. Soc.

    Google Scholar 

  33. J. A. Carrillo, Y.-P. Choi, and T. Karper, On the analysis of a coupled kinetic-fluid model with local alignment forces, Annales de I’IHP-ANL, 33:273–307, 2016.

    Google Scholar 

  34. J. A. Carrillo, Y.-P. Choi, E. Tadmor, and C. Tan, Critical thresholds in 1D Euler equations with nonlocal forces, Math. Mod. Meth. Appl. Sci., 26:185–206, 2016.

    Google Scholar 

  35. J. A. Carrillo, Y.-P. Choi, and E. Zatorska, On the pressureless damped Euler-Poisson equations with quadratic confinement: Critical thresholds and large-time behavior, Math. Models Methods Appl. Sci. 26:2311–2340, 2016.

    Google Scholar 

  36. J. A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent, and D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations, Duke Math. J., 156:229–271, 2011.

    Google Scholar 

  37. J. A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent, and D. Slepčev, Confinement in nonlocal interaction equations, Nonlinear Anal., 75(2):550–558, 2012.

    Google Scholar 

  38. J. A. Carrillo, M. R. D’Orsogna, and V. Panferov, Double milling in self-propelled swarms from kinetic theory, Kinetic and Related Models 2:363–378, 2009.

    Google Scholar 

  39. J.A. Carrillo, L.C.F. Ferreira, J.C. Precioso, A mass-transportation approach to a one dimensional fluid mechanics model with nonlocal velocity, Advances in Mathematics, 231:306–327, 2012.

    Google Scholar 

  40. J.A. Carrillo, M. Fornasier, J. Rosado, and G. Toscani, Asymptotic Flocking Dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42:218–236, 2010.

    Google Scholar 

  41. J. A. Carrillo, M. Fornasier, G. Toscani, and F. Vecil, Particle, Kinetic, and Hydrodynamic Models of Swarming, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Series: Modelling and Simulation in Science and Technology, Birkhauser, 297–336, 2010.

    Google Scholar 

  42. J. A. Carrillo, Y. Huang, Explicit Equilibrium Solutions For the Aggregation Equation with Power-Law Potentials, Kinetic Rel. Mod. 10:171–192, 2017.

    Google Scholar 

  43. J. A. Carrillo, Y. Huang, S. Martin, Explicit flock solutions for Quasi-Morse potentials, European J. Appl. Math., 25:553–578, 2014.

    Google Scholar 

  44. J. A. Carrillo, Y. Huang, S. Martin, Nonlinear stability of flock solutions in second-order swarming models, Nonlinear Anal. Real World Appl., 17:332–343, 2014.

    Google Scholar 

  45. J. A. Carrillo, A. Klar, S. Martin, and S. Tiwari, Self-propelled interacting particle systems with roosting force, Math. Mod. Meth. Appl. Sci., 20:1533–1552, 2010.

    Google Scholar 

  46. J. A. Carrillo, A. Klar, A. Roth, Single to double mill small noise transition via semi-lagrangian finite volume methods, Comm. Math. Sci. 14:1111-1136, 2016.

    Google Scholar 

  47. J. A. Carrillo, S. Martin, V. Panferov, A new interaction potential for swarming models, Physica D, 260:112–126, 2013.

    Google Scholar 

  48. J.A. Carrillo, R.J. McCann, and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Matemática Iberoamericana, 19:1–48, 2003.

    Google Scholar 

  49. J.A. Carrillo, R.J. McCann, and C. Villani, Contractions in the \(2\) -Wasserstein length space and thermalization of granular media, Arch. Rat. Mech. Anal., 179:217–263, 2006.

    Google Scholar 

  50. Y.-P. Choi, Global classical solutions of the Vlasov-Fokker-Planck equation with local alignment forces, Nonlinearity, 29:1887–1916, 2016.

    Google Scholar 

  51. Y.-P. Choi, Compressible Euler equations intreating with incompressible flow, Kinetic and Related Models, 8:335–358, 2015.

    Google Scholar 

  52. Y.-L. Chuang, M. R. D’Orsogna, D. Marthaler, A. L. Bertozzi, L. S. Chayes, State transitions and the continuum limit for a 2D interacting self-propelled particle system, Phys. D 232:33–47, 2007.

    Google Scholar 

  53. I. D. Couzin, J. Krause, Self-organization and collective behavior of vertebrates, Adv. Study Behav. 32:1–67, 2003.

    Google Scholar 

  54. F. Cucker and S. Smale, On the mathematics of emergence, Japan. J. Math. 2:197–227, 2007.

    Google Scholar 

  55. F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control 52:852–862, 2007.

    Google Scholar 

  56. P. Degond, A. Frouvelle, J.-G. Liu, Macroscopic limits and phase transition in a system of self-propelled particles, J. Nonlinear Sci. 23:427–456, 2013.

    Google Scholar 

  57. P. Degond, A. Frouvelle, J.-G. Liu, Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics, Arch. Ration. Mech. Anal. 216:63–115, 2015.

    Google Scholar 

  58. P. Degond, S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci 18 supp01:1193–1215, 2008.

    Google Scholar 

  59. R. Dobrushin, Vlasov equations, Funct. Anal. Appl. 13:115–123, 1979.

    Google Scholar 

  60. M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi, and L. Chayes, Self-propelled particles with soft-core interactions: patterns, stability, and collapse, Phys. Rev. Lett. 96, 2006.

    Google Scholar 

  61. R. Duan, M. Fornasier, and G. Toscani, A kinetic flocking model with diffusion, Comm. Math. Phys., 200:95–145, 2010.

    Google Scholar 

  62. R. C. Fetecau, Y. Huang, T. Kolokolnikov, Swarm dynamics and equilibria for a nonlocal aggregation model, Nonlinearity, 24:2681–2716, 2011.

    Google Scholar 

  63. N. Fournier, M. Hauray, and S. Mischler, Propagation of chaos for the 2D viscous vortex model, J. Eur. Math. Soc., 16:1423–1466, 2014.

    Google Scholar 

  64. F. Golse, The Mean-Field Limit for the Dynamics of Large Particle Systems, Journées équations aux dérivées partielles, 9:1–47, 2003.

    Google Scholar 

  65. S.-Y. Ha, J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci. 7 (2) (2009) 297–325.

    Google Scholar 

  66. S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinetic and Related Models 1:415–435, 2008.

    Google Scholar 

  67. J. Haskovec, Flocking dynamics and mean-field limit in the Cucker-Smale-type model with topological interactions, Physica D, 261:42–51, 2013.

    Google Scholar 

  68. M. Hauray, Wasserstein distances for vortices approximation of Euler-type equations, Math. Mod. Meth. Appl. Sci., 19:1357–1384, 2009.

    Google Scholar 

  69. M. Hauray and P.-E. Jabin, Particles approximations of Vlasov equations with singular forces: Propagation of chaos, Ann. Sci. Ec. Norm. Super., 48:891–940, 2015.

    Google Scholar 

  70. C. K. Hemelrijk and H. Hildenbrandt, Self- Organized Shape and Frontal Density of Fish Schools, Ethology 114, 2008.

    Google Scholar 

  71. H. Hildenbrandt, C. Carere, C. K. Hemelrijk, Self-organized aerial displays of thousands of starlings: a model, Behavioral Ecology 21:1349–1359, 2010.

    Google Scholar 

  72. A. Huth and C. Wissel, The Simulation of the Movement of Fish Schools, J. Theo. Bio., 1992.

    Google Scholar 

  73. Y. Katz, K. Tunstrom, C. C. Ioannou, C. Huepe, I. D. Couzin, Inferring the structure and dynamics of interactions in schooling fish, PNAS, 108:18720–18725, 2011.

    Google Scholar 

  74. A. Klar and S. Tiwari, A multiscale meshfree method for macroscopic approximations of interacting particle systems, Multiscale Model. Simul., 12:1167–1192, 2014.

    Google Scholar 

  75. T. Kolokolnikov, J. A. Carrillo, A. Bertozzi, R. Fetecau, M. Lewis, Emergent behaviour in multi-particle systems with non-local interactions, Phys. D, 260:1–4, 2013.

    Google Scholar 

  76. T. Kolokonikov, H. Sun, D. Uminsky, and A. Bertozzi. Stability of ring patterns arising from 2d particle interactions, Physical Review E, 84:015203, 2011.

    Google Scholar 

  77. C. Lattanzio, A. E. Tzavaras, Relative entropy in diffusive relaxation, SIAM J. Math. Anal. 45:1563–1584, 2013.

    Google Scholar 

  78. T. Laurent, Local and global existence for an aggregation equation, Communications in Partial Differential Equations, 32:1941–1964, 2007.

    Google Scholar 

  79. H. Levine, W.-J. Rappel and I. Cohen, Self-organization in systems of self-propelled particles, Phys. Rev. E, 63:017101, 2000.

    Google Scholar 

  80. A. J. Leverentz, C. M. Topaz, A. J. Bernoff, Asymptotic dynamics of attractive-repulsive swarms, SIAM J. Appl. Dyn. Syst., 8:880–908, 2009.

    Google Scholar 

  81. Y. X. Li, R. Lukeman, and L. Edelstein-Keshet, Minimal mechanisms for school formation in self-propelled particles, Physica D, 237:699–720, 2008.

    Google Scholar 

  82. R. Lukeman R, Y. X. Li, L. Edelstein-Keshet, How do ducks line up in rows: inferring individual rules from collective behaviour, PNAS, 107:12576–12580, 2010.

    Google Scholar 

  83. A. Mogilner, L. Edelstein-Keshet, L. Bent, and A. Spiros, Mutual interactions, potentials, and individual distance in a social aggregation, J. Math. Biol., 47:353–389, 2003.

    Google Scholar 

  84. A. Mogilner, L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Bio., 38:534–570, 1999.

    Google Scholar 

  85. S. Motsch, E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144:923–947, 2011.

    Google Scholar 

  86. S. Motsch, E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Review 56:577–621, 2014.

    Google Scholar 

  87. H. Neunzert, An introduction to the nonlinear Boltzmann-Vlasov equation, In Kinetic theories and the Boltzmann equation (Montecatini Terme, 1981), Lecture Notes in Math. 1048. Springer, Berlin, 1984.

    Google Scholar 

  88. K. J. Painter, J. M. Bloomfield, J. A. Sherratt, A. Gerisch, A nonlocal model for contact attraction and repulsion in heterogeneous populations, Bulletin of Mathematical Biology 77:1132–1165, 2015.

    Google Scholar 

  89. J. Parrish, and L. Edelstein-Keshet, Complexity, pattern, and evolutionary trade-offs in animal aggregation, Science, 294: 99–101, 1999.

    Google Scholar 

  90. M.J.D. Powell, A Fortran Subroutine for Solving Systems of Nonlinear Algebraic Equations, Numerical Methods for Nonlinear Algebraic Equations, (P. Rabinowitz, ed.), Ch.7, 1970.

    Google Scholar 

  91. C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model, ACM SIGGRAPH Computer Graphics, 21: 25–34, 1987.

    Google Scholar 

  92. E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, Springer, Berlin, 1997.

    Google Scholar 

  93. H. Spohn, Large scale dynamics of interacting particles, Texts and Monographs in Physics, Springer, 1991.

    Google Scholar 

  94. A.-S. Sznitman, Topics in propagation of chaos, In Ecole d’Eté de Probabilités de Saint-Flour XIX 1989, Lecture Notes in Math. 1464. Springer, Berlin, 1991.

    Google Scholar 

  95. E. Tadmor and C. Tan, Critical thresholds in flocking hydrodynamics with non-local alignment, Phil. Trans. R. Soc. A, 372:20130401, 2014.

    Google Scholar 

  96. C. Tan, A discontinuous Galerkin method on kinetic flocking models, to appear in Math. Models Methods Appl. Sci.

    Google Scholar 

  97. C.M. Topaz and A.L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65:152–174, 2004.

    Google Scholar 

  98. C.M. Topaz, A.L. Bertozzi, and M.A. Lewis, A nonlocal continuum model for biological aggregation, Bulletin of Mathematical Biology, 68:1601–1623, 2006.

    Google Scholar 

  99. T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75:1226–1229, 1995.

    Google Scholar 

Download references

Acknowledgements

J. A. C. was partially supported by the Royal Society via a Wolfson Research Merit Award. J. A. C. and Y. -P. C. were partially supported by EPSRC grant EP/K008404/1. Y. -P. C. was supported by the ERC-Stating grant HDSPCONTR “High-Dimensional Sparse Optimal Control”. S. P. P. was partially supported by a Erasmus+ scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Carrillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Carrillo, J.A., Choi, YP., Perez, S.P. (2017). A Review on Attractive–Repulsive Hydrodynamics for Consensus in Collective Behavior. In: Bellomo, N., Degond, P., Tadmor, E. (eds) Active Particles, Volume 1 . Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-49996-3_7

Download citation

Publish with us

Policies and ethics