Skip to main content

Testing Independence via Spectral Moments

  • Conference paper
  • First Online:
Book cover Applied and Computational Matrix Analysis (MAT-TRIAD 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 192))

Included in the following conference series:

  • 1157 Accesses

Abstract

Assume that a matrix \(X:p\times n\) is matrix normally distributed and that the Kolmogorov condition , i.e., \(\lim _{n,p\rightarrow \infty }\frac{n}{p}=c>0\), holds. We propose a test for identity of the covariance matrix using a goodness-of-fit approach. Calculations are based on a recursive formula derived by Pielaszkiewicz et al. [19]. The test performs well regarding the power compared to presented alternatives, for both \(c<1\) or \(c\ge 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, T.W.: An Introduction to Multivariate Statistical Analysis, 3rd edn. Wiley, New York (2003)

    MATH  Google Scholar 

  2. Arharov, L.V.: Limits theorems for the characteristical roots of a sample covariance matrix. Sov. Math. Dokl. 12, 1206–1209 (1971)

    MathSciNet  Google Scholar 

  3. Bai, Z., Jiang, D., Yao, J., Zheng, S.: Corrections to LRT on large-dimensional covariance matrix by RMT. Ann. Stat. 37, 3822–3840 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Birke, M., Dette, H.A.: A note on testing the covariance matrix for large dimension. Stat. Probab. Lett. 74, 281–289 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, S., Zhang, L., Zhong, P.: Tests for high dimensional covariance matrices. J. Am. Stat. Assoc. 105, 810–819 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fisher, T.J., Sun, X., Gallagher, C.M.: A new test for sphericity of the covariance matrix for high dimensional data. J. Multivar. Anal. 101(10), 2554–2570 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fisher, T.J.: On testing for an identity covariance matrix when the dimensionality equals or exceeds the sample size. J. Stat. Plan. Infer. 142(1), 312–326 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fujikoshi, Y., Ulyanov, V.V., Shimizu, R.: Multivariate Statistics: High-Dimensional and Large-Sample Approximations. Wiley, New York (2010)

    Book  MATH  Google Scholar 

  9. Jiang, D., Jiang, T., Yang, F.: Likelihood ratio tests for covariance matrices of high-dimensional normal distributions. J. Stat. Plan. Inference 142, 2241–2256 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jiang, T., Qi, Y.: Likelihood ratio tests for high-dimensional normal distributions. Scand. J. Stat. (2015). doi:10.1111/sjos.12147

    MathSciNet  MATH  Google Scholar 

  11. Jiang, T., Yang, F.: Central limit theorems for classical likelihood ratio tests for high-dimensional normal distributions. Ann. Stat. 41, 2029–2074 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jonsson, D.: Some limit theorems for the eigenvalues of a sample covariance matrix. J. Multivar. Anal. 12, 1–38 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kolmogorov, A.N.: Sulla determinazione empirica di una legge di distribuzione (On the empirical determination of a distribution law). Giorn. Inst. Ital. Attuari. 4, 83–91 (1933)

    Google Scholar 

  14. Ledoit, O., Wolf, M.: Same hypothesis tests for the covariance matrix when the dimension is large compared to the sample size. Ann. Stat. 30(4), 1081–1102 (2002)

    Article  MATH  Google Scholar 

  15. Mauchly, J.W.: Significance test for sphericity of a normal N-variate distribution. Ann. Math. Stat. 11, 204–209 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  16. Muirhead, R.J.: Aspects of Multivariate Statistical Theory. Wiley, New York (1982)

    Book  MATH  Google Scholar 

  17. Nagao, H.: On same test criteria for covariance matrix. Ann. Stat. 1, 700–709 (1973)

    Article  MATH  Google Scholar 

  18. Pielaszkiewicz, J.: Contributions to High-Dimensional Analysis under Kolmogorov Condition. Linkopings Studies in Science and Technology. Dissertation No. 1724 (2015)

    Google Scholar 

  19. Pielaszkiewicz, J., von Rosen, D., Singull, M.: On \({\mathbb{E}}\big [\prod _{i=0}^k \,\text{Tr}\{W^{m_i}\} \big ]\), where \(W\sim {\fancyscript {W}}_p(I,n)\) to appear in Commun. Stat. Theory. doi:10.1080/03610926.2015.1053942

  20. Schott, J.R.: Some tests for the equality of covariance matrices. J. Stat. Plan. Inference 94, 25–36 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schott, J.R.: Testing of complete independence in high dimensions. Biometrika 92(4), 951–956 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schott, J.R.: A test for the equality of covariance matrices when the dimension is large relative to the sampel size. Comput. Stat. Data Anal. 51(12), 6535–6542 (2007)

    Article  MATH  Google Scholar 

  23. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples). Biometrika 52(3/4), 591–611 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  24. Srivastava, M.S.: Some tests concerning the covariance matrix in high dimensional data. J. Japan Stat. Soc. 35(2), 251–272 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanta Pielaszkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pielaszkiewicz, J., von Rosen, D., Singull, M. (2017). Testing Independence via Spectral Moments. In: Bebiano, N. (eds) Applied and Computational Matrix Analysis. MAT-TRIAD 2015. Springer Proceedings in Mathematics & Statistics, vol 192. Springer, Cham. https://doi.org/10.1007/978-3-319-49984-0_18

Download citation

Publish with us

Policies and ethics